Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
This article primarily establishes a two-soliton system and employs the Lewis-Riesenfeld invariant inverse control method to achieve shortcuts to adiabaticity(STA)technology.We study an atomic soliton Josephson juncti...This article primarily establishes a two-soliton system and employs the Lewis-Riesenfeld invariant inverse control method to achieve shortcuts to adiabaticity(STA)technology.We study an atomic soliton Josephson junctions(SJJs)device and subsequently compare and analyze it with atomic bosonic Josephson junctions.Moreover,we use higher-order expressions of the auxiliary equations to optimize the results and weaken the detrimental effect of the sloshing amplitude.We find that in the adiabatic shortcut evolution of two systems with time-containing tunnelling rates,the SJJs system is more robust over a rather short time evolution.In comparison with linear ramping,the STA technique is easier to achieve with the precise modulation of the quantum state in the SJJs system.展开更多
Phosphorus is a promising anode with high capacity (2596 mAh g^(-1)and 6075~6924 mAh cm^(-3)),low lithium-ion diffusion barrier (0.08 e V),and appropriate lithiation potential (~0.7 V vs Li+/Li).However,it faces the p...Phosphorus is a promising anode with high capacity (2596 mAh g^(-1)and 6075~6924 mAh cm^(-3)),low lithium-ion diffusion barrier (0.08 e V),and appropriate lithiation potential (~0.7 V vs Li+/Li).However,it faces the problems of huge volume expansion (~300%),low electronic conductivity (10^(-14)~10^(2)S cm^(-1)),soluble intermediates (lithium polyphosphides,Li_(x)Ps),degradation in air,and low thermal stability.In this work,phosphorus/carbon nanotube composites were coated with a polyimide layer,which plays the roles of a buffer layer to relieve the volume expansion of phosphorus,an obstruct layer to confine LixPs,an inert layer to prevent the degradation of phosphorus in air,a heat resistant layer to improve the thermal stability of the anode.The resulting composites (P/CNT@PI) display high capacity retention of798.1 m Ah g^(-1)after 150 cycles at 1 A g^(-1),achieving 17 times as much as the control sample (P/CNT).展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
基金supported by the National Natural Science Foundation of China(Grant nos.12075145 and 12211540002)the Science and Technology Commission of Shanghai Municipal(Grant no.2019SHZDZX01-ZX04)。
文摘This article primarily establishes a two-soliton system and employs the Lewis-Riesenfeld invariant inverse control method to achieve shortcuts to adiabaticity(STA)technology.We study an atomic soliton Josephson junctions(SJJs)device and subsequently compare and analyze it with atomic bosonic Josephson junctions.Moreover,we use higher-order expressions of the auxiliary equations to optimize the results and weaken the detrimental effect of the sloshing amplitude.We find that in the adiabatic shortcut evolution of two systems with time-containing tunnelling rates,the SJJs system is more robust over a rather short time evolution.In comparison with linear ramping,the STA technique is easier to achieve with the precise modulation of the quantum state in the SJJs system.
基金the support sponsored by the National Key Research and Development Program of China(2019YFE0118800)the National Natural Science Foundation of China(22005215)the Hebei Province Innovation Ability Promotion Project(20544401D,20312201D)。
文摘Phosphorus is a promising anode with high capacity (2596 mAh g^(-1)and 6075~6924 mAh cm^(-3)),low lithium-ion diffusion barrier (0.08 e V),and appropriate lithiation potential (~0.7 V vs Li+/Li).However,it faces the problems of huge volume expansion (~300%),low electronic conductivity (10^(-14)~10^(2)S cm^(-1)),soluble intermediates (lithium polyphosphides,Li_(x)Ps),degradation in air,and low thermal stability.In this work,phosphorus/carbon nanotube composites were coated with a polyimide layer,which plays the roles of a buffer layer to relieve the volume expansion of phosphorus,an obstruct layer to confine LixPs,an inert layer to prevent the degradation of phosphorus in air,a heat resistant layer to improve the thermal stability of the anode.The resulting composites (P/CNT@PI) display high capacity retention of798.1 m Ah g^(-1)after 150 cycles at 1 A g^(-1),achieving 17 times as much as the control sample (P/CNT).