期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Best Proximity Point Theorems for p-Proximalα-η-β-Quasi Contractions in Metric Spaces with w_(0)-Distance
1
作者 Mengdi LIU Zhaoqi WU +1 位作者 Chuanxi ZHU chenggui yuan 《Journal of Mathematical Research with Applications》 CSCD 2022年第1期95-110,共16页
In this paper,we propose a new class of non-self mappings called p-proximalα-η-β-quasi contraction,and introduce the concepts ofα-proximal admissible mapping with respect toηand(α,d)regular mapping with respect... In this paper,we propose a new class of non-self mappings called p-proximalα-η-β-quasi contraction,and introduce the concepts ofα-proximal admissible mapping with respect toηand(α,d)regular mapping with respect toη.Based on these new notions,we study the existence and uniqueness of best proximity point for this kind of new contractions in metric spaces with w;-distance and obtain a new theorem,which generalize and complement the results in[Ayari,M.I.et al.Fixed Point Theory Appl.,2017,2017:16]and[Ayari,M.I.et al.Fixed Point Theory Appl.,2019,2019:7].We give an example to show the validity of our main result.Moreover,we obtain several consequences concerning about best proximity point and common fixed point results for two mappings,and we present an application of a corollary to discuss the solutions to a class of systems of Volterra type integral equations. 展开更多
关键词 best proximity point p-proximalα-η-βquasi contraction w_(0)-distance α-proximal admissible mapping with respect toη d)regular mapping with respect toη
原文传递
一类随机延迟微分方程截断型theta-EM算法的收敛性 被引量:5
2
作者 谭利 袁成桂 《中国科学:数学》 CSCD 北大核心 2020年第1期137-154,共18页
本文主要考察随机延迟微分方程截断型theta-EM (Euler-Maruyama)算法的强收敛性问题.将截断型EM算法推广到一般形式,提出截断型theta-EM算法,并讨论随机延迟微分方程在非全局Lipschitz条件下的强收敛率,得到其强收敛阶数.
关键词 随机延迟微分方程 截断型theta-EM算法 局部LIPSCHITZ条件 强收敛率
原文传递
Strong convergence rate of truncated Euler-Maruyama method for stochastic differential delay equations with Poisson jumps 被引量:2
3
作者 Shuaibin GAO Junhao HU +1 位作者 Li TAN chenggui yuan 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第2期395-423,共29页
We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are i... We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition. 展开更多
关键词 Truncated Euler-Maruyama method stochastic differential delay equations Poisson jumps rate of the convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部