期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MOF-derived Cu embedded into N-doped mesoporous carbon as a robust support of PdAu nanocatalysts for ethanol electrooxidation
1
作者 Yu-Fu Huang Peng Wu +10 位作者 Jun-Ping Tang Jian Yang Jing Li Shuai Chen Xue-Ling Zhao chengchen Bin-Wei Zhang Yan-Yun Ma Wei-Heng Shi Dong-Hai Lin Shi-Gang Sun 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1083-1094,共12页
Metal-organic frameworks(MOFs)h ave attracted widespread attention due to their large surface area and porous structure.Rationally designing the nanostructures of MOFs to promote their application in ethanol electroox... Metal-organic frameworks(MOFs)h ave attracted widespread attention due to their large surface area and porous structure.Rationally designing the nanostructures of MOFs to promote their application in ethanol electrooxidation is still a challenge.Here,a novel Cu-NCNs(Cu-nitrogen-doped carbon nanotubes)support was synthesized by pyrolysis of melamine(MEL)and Cu-ZIF-8 together,and then,Pd-Au nanoalloys were loaded by sodium borohydride reduction method to prepare PdAu@Cu-NCNs catalysts.The generating mesoporous carbon with high specific surface area and favorable electron and mass transport can be used as a potential excellent carrier for PdAu nanoparticles.In addition,the balance of catalyst composition and surface structure was tuned by controlling the content of Pd and Au.Thus,the best-performed Pd_(2)Au_(2)@Cu-NCN-1000-2(where 1000 means the carrier calcination temperature,and 2 means the calcination constant temperature time)catalyst exhibits better long-term stability and electrochemical activity for ethanol oxidation in alkaline media(4.80 A·mg^(-1)),which is 5.05 times higher than that of commercial Pd/C(0.95 A·mg^(-1)).Therefore,this work is beneficial to further promoting the application of MOFs in direct ethanol fuel cells(DEFCs)and can be used as inspiration for the design of more efficient catalyst support structures. 展开更多
关键词 Metal-organic frameworks(MOFs) N-DOPED Mesoporous carbon PdAu Ethanol electrooxidation
原文传递
Femtosecond Stimulated Raman Line Shapes:Dependence on Resonance Conditions of Pump and Probe Pulses
2
作者 chengchen Liang-dongZhu ChongFang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期492-502,614,615,共13页
Resonance enhancement has been increasingly employed in the emergent felntosecond stimu- lated Raman spectroscopy (FSRS) to selectively monitor molecular structure and dynamics with improved spectral and temporal re... Resonance enhancement has been increasingly employed in the emergent felntosecond stimu- lated Raman spectroscopy (FSRS) to selectively monitor molecular structure and dynamics with improved spectral and temporal resolutions and signal-to-noise ratios. Such joint eflforts by the technique- and application-oriented scientists and engineers have laid the foundation for exploiting the tunable FSRS methodology to investigate a great variety of photosensitive systems and elucidate the underlying functional mechanisms on molecular time scales. Dur- ing spectral analysis, peak line shapes remain a major concern with an intricate dependence on resonance conditions. Here, we present a comprehensive study of line shapes by tuning the Rarnan pump wavelength from red to blue side of the ground-state absorption band of the fluorescent dye rhodarnine 6G in solution. Distinct line shape patterns in Stokes and anti-Stokes FSRS as well as from the low to high-frequency modes highlight the competition between multiple third-order and higher-order nonlinear pathways, governed by difl^rent res- onance conditions achieved by Raman pump and probe pulses. In particular, the resonance condition of probe wavelength is revealed to play an important role in generating circular line shape changes through oppositely phased dispersion via hot luminescence (HL) pathways. Meanwhile, on-resonance conditions of the Rarnan pump could promote excited-state vibrational modes which are broadened and red-shifted from the coincident ground-state vibrational modes, posing challenges for spectral analysis. Certain strategies in tuning the Raman pump and probe to characteristic regions across an electronic transition band are discussed to improve the FSRS usability and versatility as a powerful structural dynamics toolset to advance chemical, physical, materials, and biological sciences. 展开更多
关键词 Ferntosecond stimulated Rarnan spectroscopy Resonance enhancement Ra- man pump and probe pulses Wavelength tunability Dispersive line shapes Stokes and anti-Stokes FSRS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部