To effectively enhance the catalytic activity of NiS,NiS particles confined into carbon fibers were prepared by electrostatic spinning followed pyrolyzation and NiS particles decorating was performed by further hydrot...To effectively enhance the catalytic activity of NiS,NiS particles confined into carbon fibers were prepared by electrostatic spinning followed pyrolyzation and NiS particles decorating was performed by further hydrothermal loading.The decorated NiS exhibits particle(NiS@PAN-NiS)and needle-like(NiS@PAN-NiS^(*))morphologies.After adding the catalysts into MgH_(2),the synthesized MgH_(2)-5 wt%NiS@PAN-NiS composite can absorb 2.6 wt%hydrogen at 353 K and release 5.0 wt%hydrogen within 1 h at 573 K.The initial hydrogen desorption temperature was reduced to 539 K.The activation energies for hydrogen absorption/desorption were greatly reduced to 66.76 and 89.95 kJ mol^(-1),respectively.The method of confining by electrospinning and particle decoration by hydrothermal loading reduce NiS particle agglomeration.The Mg_(2)Ni/Mg_(2)NiH_(4)hydrogen pump formed by reaction between NiS and MgH_(2)effectively enhanced hydrogen absorption and desorption kinetics.The formed MgS also improved the catalytic activity on the transformation of Mg and MgH_(2).Moreover,the carbon fibers should influence the contact between in situ formed MgS and Mg_(2)Ni,providing more catalytic sites and hydrogen diffusion pathways.The construction of NiS/carbon fibers confined NiS composite by carbon fibers derived from pyrolyzation as medium provides considerable way for designing NiS-based catalysts to enhance the hydrogen storage performances of MgH_(2).展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52101274 and 52472131)the Natural Science Foundation of Shandong Province(Nos.ZR2020QE011 and ZR2022ME089)+6 种基金Yantai Basic Research Project(No.2024JCYJ097)the Key Research and Development Projects of Shandong Province(No.2024TSGC0402)the Youth Top Talent Foundation of Yantai University(No.2219008)the Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)the Natural Science Foundation of Qinghai Province for Distinguished Young Scholars(No.2025-ZJ-966J)the Talent Youth Project of Chinese Academy of Sciences(No.E410GC03)the CollegeStudent Innovation and Entrepreneurship Training Program Project(No.202311066088)
文摘To effectively enhance the catalytic activity of NiS,NiS particles confined into carbon fibers were prepared by electrostatic spinning followed pyrolyzation and NiS particles decorating was performed by further hydrothermal loading.The decorated NiS exhibits particle(NiS@PAN-NiS)and needle-like(NiS@PAN-NiS^(*))morphologies.After adding the catalysts into MgH_(2),the synthesized MgH_(2)-5 wt%NiS@PAN-NiS composite can absorb 2.6 wt%hydrogen at 353 K and release 5.0 wt%hydrogen within 1 h at 573 K.The initial hydrogen desorption temperature was reduced to 539 K.The activation energies for hydrogen absorption/desorption were greatly reduced to 66.76 and 89.95 kJ mol^(-1),respectively.The method of confining by electrospinning and particle decoration by hydrothermal loading reduce NiS particle agglomeration.The Mg_(2)Ni/Mg_(2)NiH_(4)hydrogen pump formed by reaction between NiS and MgH_(2)effectively enhanced hydrogen absorption and desorption kinetics.The formed MgS also improved the catalytic activity on the transformation of Mg and MgH_(2).Moreover,the carbon fibers should influence the contact between in situ formed MgS and Mg_(2)Ni,providing more catalytic sites and hydrogen diffusion pathways.The construction of NiS/carbon fibers confined NiS composite by carbon fibers derived from pyrolyzation as medium provides considerable way for designing NiS-based catalysts to enhance the hydrogen storage performances of MgH_(2).