With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature soli...With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS_(4)compounded with graphene oxide(SbPS_(4)/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS_(4)shows a high theoretical specific capacity(1335 mAh/g)according to the conversion-alloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS_(4)/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS_(4)compounded with 10%GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS_(4)/GO anode has a promising application potential for SIBs.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.91963118,51801030)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University,No.2020004)。
文摘With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS_(4)compounded with graphene oxide(SbPS_(4)/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS_(4)shows a high theoretical specific capacity(1335 mAh/g)according to the conversion-alloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS_(4)/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS_(4)compounded with 10%GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS_(4)/GO anode has a promising application potential for SIBs.