For the first time,an allowable defect analysis of the bowl body of XZZ 1200-G Centrifuge was made by using fatigue fracture mechanics method;and,again for the first time,the design fatigue curve of the dangerous sect...For the first time,an allowable defect analysis of the bowl body of XZZ 1200-G Centrifuge was made by using fatigue fracture mechanics method;and,again for the first time,the design fatigue curve of the dangerous section of the bowl body was given out、which may form the basis for the design and use of the centrifuge.展开更多
The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use ef...The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists,environmental groups,and agricultural policymakers worldwide.In high-yielding maize systems the major method of N loss is nitrate leaching.In this review paper,the characteristic of nitrate movement in the soil,N uptake by maize as well as the regulation of root growth by soil N availability are discussed.We suggest that an ideotype root architecture for efficient N acquisition in maize should include(i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil;(ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil;and(iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.展开更多
Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and r...Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.展开更多
Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of...Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.展开更多
Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulatio...Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.展开更多
文摘For the first time,an allowable defect analysis of the bowl body of XZZ 1200-G Centrifuge was made by using fatigue fracture mechanics method;and,again for the first time,the design fatigue curve of the dangerous section of the bowl body was given out、which may form the basis for the design and use of the centrifuge.
基金supported by the National Basic Research Program of China (Grant No. 2009CB11860)the National Natural Science Foundation of China (Grant Nos. 31071852,30771289,and 30821003)the Special Fund for Agriculture Profession (Grant No. 200803030)
文摘The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists,environmental groups,and agricultural policymakers worldwide.In high-yielding maize systems the major method of N loss is nitrate leaching.In this review paper,the characteristic of nitrate movement in the soil,N uptake by maize as well as the regulation of root growth by soil N availability are discussed.We suggest that an ideotype root architecture for efficient N acquisition in maize should include(i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil;(ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil;and(iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.
基金supported by the National Basic Research Program of China (2011CB100305,2009CB11860)the National Natural Science Foundation of China (31121062,31172015)the Special Fund for Agriculture Profession (201103003)
文摘Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.
基金supported by the National Basic Research Program of China (Grant No. 2009CB11860)the National Natural Science Foundation of China (Grant Nos. 31071852 and 30821003)the Special Fund for Agriculture Profession (Grant No. 201103003)
文摘Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31121062 and 31071852)the National Basic Research Program of China (Grant No. 2009CB11860)the Special Fund for the Agricultural Profession (Grant No. 201103003)
文摘Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.