This article reports the results of our investigations on electronic and transport properties of zinc blende gallium antimonide (zb-GaSb). Our ab-initio, self-consistent and non-relativistic calculations used a local ...This article reports the results of our investigations on electronic and transport properties of zinc blende gallium antimonide (zb-GaSb). Our ab-initio, self-consistent and non-relativistic calculations used a local density approximation potential (LDA) and the linear combination of atomic orbital formalism (LCAO). We have succeeded in performing a generalized minimization of the energy, using the Bagayoko, Zhao and Williams (BZW) method, to reach the ground state of the material while avoiding over-complete basis sets. Consequently, our results have the full physical content of density functional theory (DFT) and agree with available, corresponding experimental data. Using an experimental room temperature lattice constant of 6.09593?, we obtained a direct band gap of 0.751 eV, in good agreement with room temperature measurements. Our results reproduced the experimental locations of the peaks in the total density of valence states as well as the measured electron and hole effective masses. Hence, this work points to the capability of ab-initio DFT calculations to inform and to guide the design and the fabrication of semiconductor based devices—provided a generalized minimization of the energy is performed.展开更多
We report results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport and bulk properties of rock salt magnesium sulfide (MgS). In the absence of experimental data on ...We report results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport and bulk properties of rock salt magnesium sulfide (MgS). In the absence of experimental data on these properties, except for the bulk modulus, these results are predictions. Our calculations utilized the Ceperley and Alder local density approximation (LDA) potential and the linear combination of Gaussian orbitals (LCGO). The key difference between our computations and other previous ab-initio DFT ones stems from our use of successively larger basis sets, in consecutive, self-consistent calculations, to attain the ground state of the material. We predicted an indirect (Γ-X) band gap of 3.278 eV for a room temperature lattice constant of 5.200Å. We obtained a predicted low temperature indirect (Γ-X) band gap of 3.512 eV, using the equilibrium lattice constant of 5.183Å. We found a theoretical value of 79.76 GPa for the bulk modulus;it agrees very well with the experimental finding of 78 ±3.7 GPa.展开更多
We report details of our ab-initio, self-consistent density functional theory (DFT) calculations of electronic and related properties of wurtzite beryllium oxide (w-BeO). Our calculations were performed using a local ...We report details of our ab-initio, self-consistent density functional theory (DFT) calculations of electronic and related properties of wurtzite beryllium oxide (w-BeO). Our calculations were performed using a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism. Unlike previous DFT studies of BeO, the implementation of the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by the work of Ekuma and Franklin (BZW-EF), ensures the full physical content of the results of our calculations, as per the derivation of DFT. We present our computed band gap, total and partial densities of states, and effective masses. Our direct band gap of 10.30 eV, reached by using the experimental lattice constants of a = 2.6979 Åand c = 4.3772 Åat room temperature, agrees very well the experimental values of 10.28 eV and 10.3 eV. The hybridization of O and Be p states in the upper valence bands, as per our calculated, partial densities of states, are in agreement with corresponding, experimental findings.展开更多
文摘This article reports the results of our investigations on electronic and transport properties of zinc blende gallium antimonide (zb-GaSb). Our ab-initio, self-consistent and non-relativistic calculations used a local density approximation potential (LDA) and the linear combination of atomic orbital formalism (LCAO). We have succeeded in performing a generalized minimization of the energy, using the Bagayoko, Zhao and Williams (BZW) method, to reach the ground state of the material while avoiding over-complete basis sets. Consequently, our results have the full physical content of density functional theory (DFT) and agree with available, corresponding experimental data. Using an experimental room temperature lattice constant of 6.09593?, we obtained a direct band gap of 0.751 eV, in good agreement with room temperature measurements. Our results reproduced the experimental locations of the peaks in the total density of valence states as well as the measured electron and hole effective masses. Hence, this work points to the capability of ab-initio DFT calculations to inform and to guide the design and the fabrication of semiconductor based devices—provided a generalized minimization of the energy is performed.
文摘We report results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport and bulk properties of rock salt magnesium sulfide (MgS). In the absence of experimental data on these properties, except for the bulk modulus, these results are predictions. Our calculations utilized the Ceperley and Alder local density approximation (LDA) potential and the linear combination of Gaussian orbitals (LCGO). The key difference between our computations and other previous ab-initio DFT ones stems from our use of successively larger basis sets, in consecutive, self-consistent calculations, to attain the ground state of the material. We predicted an indirect (Γ-X) band gap of 3.278 eV for a room temperature lattice constant of 5.200Å. We obtained a predicted low temperature indirect (Γ-X) band gap of 3.512 eV, using the equilibrium lattice constant of 5.183Å. We found a theoretical value of 79.76 GPa for the bulk modulus;it agrees very well with the experimental finding of 78 ±3.7 GPa.
文摘We report details of our ab-initio, self-consistent density functional theory (DFT) calculations of electronic and related properties of wurtzite beryllium oxide (w-BeO). Our calculations were performed using a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism. Unlike previous DFT studies of BeO, the implementation of the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by the work of Ekuma and Franklin (BZW-EF), ensures the full physical content of the results of our calculations, as per the derivation of DFT. We present our computed band gap, total and partial densities of states, and effective masses. Our direct band gap of 10.30 eV, reached by using the experimental lattice constants of a = 2.6979 Åand c = 4.3772 Åat room temperature, agrees very well the experimental values of 10.28 eV and 10.3 eV. The hybridization of O and Be p states in the upper valence bands, as per our calculated, partial densities of states, are in agreement with corresponding, experimental findings.