期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
<i>Ab-Initio</i>Computations of Electronic, Transport, and Structural Properties of <i>zinc-blende</i>Beryllium Selenide (<i>zb</i>-BeSe) 被引量:1
1
作者 Richard Inakpenu cheick bamba +4 位作者 Ifeanyi H. Nwigboji Lashounda Franklin Yuriy Malozovsky Guang-Lin Zhao Diola Bagayoko 《Journal of Modern Physics》 2017年第4期552-566,共15页
We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (... We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT calculations is the implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band gap is 5.46 eV, from &Gamma;to a conduction band minimum between Г and X, for a room temperature lattice constant of 5.152 &Aring;. Available, room temperature experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the need for additional measurements of this gap. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 &plusmn;?1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 &Aring;and 5.4 eV, respectively. 展开更多
关键词 Density Functional Theory (DFT) LDA Ab-Initio Calculations Band Gap BZW-EF Method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部