期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermal runaway and jet flame features of LIBs undergone high-rate charge/discharge:An investigation
1
作者 Junling Wang Junjie Yang +4 位作者 Wei Bai Zhirong Wang Konghao Yu Yawei Lu chaoling han 《Journal of Energy Chemistry》 2025年第4期826-837,共12页
In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lit... In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lithium iron phosphate(LFP)batteries.The TR process caused by overheating LFP batteries is usually divided into four stages,with high temperatures and fire risks.High-rate charge and discharge damage the internal morphology and structural stability of materials seriously.The TR behavior of battery is fully aggravated,which is further manifested by the advanced opening of the safety vent,release of gas and occurrence of TR.With the increase of charging rate,the deteriorated TR characteristics can be discerned,such as the lower TR temperature,the shorter TR time,and the more serious TR consequences.Such changes can be assigned to the decline of battery stability.In addition,the battery SOC greatly impacts safety,especially the flame temperature and the severity of consequences.As for the 100%SOC battery cycled at 4 C,there is still a high risk of thermal runaway propagation at the position 1 m far away from the battery.This work helps to realize the TR and fire features of battery in-depth,enlightening the safety protection of battery. 展开更多
关键词 Thermal runaway Lithium-ion batteries State of charge High charge–discharge rate
在线阅读 下载PDF
Superior and safer lithium sulfur batteries realized by robust polysulfides-retarding dam with high flame retardance 被引量:1
2
作者 Junling Wang Yanfang Cao +5 位作者 Zhirong Wang Yinquan Zhao Chuang He Fudong Zhao chaoling han Shui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期471-486,I0011,共17页
The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow... The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs. 展开更多
关键词 Lithium-sulfur batteries Thermal safety Flame retardancy SEPARATOR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部