Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS)is a severe clinical disorder characterized by widespread inflammation,diffuse alveolar damage,and pulmonary edema,often leading to respiratory failure a...Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS)is a severe clinical disorder characterized by widespread inflammation,diffuse alveolar damage,and pulmonary edema,often leading to respiratory failure and death.Despite significant advances in clinical care,ALI/ARDS remains the leading cause of death among intensive care unit patients.Sepsis is the primary risk factor for the development of ALI/ARDS,as excessive inflammatory responses contribute to organ injury and high mortality in critically ill patients.展开更多
Protein arginine methyltransferases(PRMTs)play diverse biological roles and are specifically involved in immune cell development and inflammation.However,their role in antiviral innate immunity has not been elucidated...Protein arginine methyltransferases(PRMTs)play diverse biological roles and are specifically involved in immune cell development and inflammation.However,their role in antiviral innate immunity has not been elucidated.Viral infection triggers the TBK1–IRF3 signaling pathway to stimulate the production of type-I interferon,which mediates antiviral immunity.We performed a functional screen of the nine mammalian PRMTs for regulators of IFN-βexpression and found that PRMT6 inhibits the antiviral innate immune response.Viral infection also upregulated PRMT6 protein levels.We generated PRMT6-deficient mice and found that they exhibited enhanced antiviral innate immunity.PRMT6 deficiency promoted the TBK1–IRF3 interaction and subsequently enhanced IRF3 activation and type-I interferon production.Mechanistically,viral infection enhanced the binding of PRMT6 to IRF3 and inhibited the interaction between IRF3 and TBK1;this mechanism was independent of PRMT6 methyltransferase activity.Thus,PRMT6 inhibits antiviral innate immunity by sequestering IRF3,thereby blocking TBK1-IRF3 signaling.Our work demonstrates a methyltransferase-independent role for PRMTs.It also identifies a negative regulator of the antiviral immune response,which may protect the host from the damaging effects of an overactive immune system and/or be exploited by viruses to escape immune detection.展开更多
Correction to:Cellular&Molecular Immunology(2019)16,800–809;https://doi.org/10.1038/s41423-018-0057-4,published online 4 July 2018 In the published version of Fig.2d,the HE image for Prmt6+/+mice of the medium gr...Correction to:Cellular&Molecular Immunology(2019)16,800–809;https://doi.org/10.1038/s41423-018-0057-4,published online 4 July 2018 In the published version of Fig.2d,the HE image for Prmt6+/+mice of the medium group was mistakenly presented.Figure 2d has now been corrected.The corrected version of Figure 2 is shown below.展开更多
基金supported by National Natural Science Foundation of China(82471792,82270004,81870061,82202382,31770945)Beijing Municipal Natural Science Foundation(7242135)Zhejiang Provincial Natural Science Foundation(LY20H010003).
文摘Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS)is a severe clinical disorder characterized by widespread inflammation,diffuse alveolar damage,and pulmonary edema,often leading to respiratory failure and death.Despite significant advances in clinical care,ALI/ARDS remains the leading cause of death among intensive care unit patients.Sepsis is the primary risk factor for the development of ALI/ARDS,as excessive inflammatory responses contribute to organ injury and high mortality in critically ill patients.
基金supported by grants from the National Key R&D program of China(2018YFA0507401)National Natural Science Foundation of China(31390431,31522019,81471568,80178104,and 31770945)the CAMS Innovation Fund for Medical Sciences(2016-12M-1-003).
文摘Protein arginine methyltransferases(PRMTs)play diverse biological roles and are specifically involved in immune cell development and inflammation.However,their role in antiviral innate immunity has not been elucidated.Viral infection triggers the TBK1–IRF3 signaling pathway to stimulate the production of type-I interferon,which mediates antiviral immunity.We performed a functional screen of the nine mammalian PRMTs for regulators of IFN-βexpression and found that PRMT6 inhibits the antiviral innate immune response.Viral infection also upregulated PRMT6 protein levels.We generated PRMT6-deficient mice and found that they exhibited enhanced antiviral innate immunity.PRMT6 deficiency promoted the TBK1–IRF3 interaction and subsequently enhanced IRF3 activation and type-I interferon production.Mechanistically,viral infection enhanced the binding of PRMT6 to IRF3 and inhibited the interaction between IRF3 and TBK1;this mechanism was independent of PRMT6 methyltransferase activity.Thus,PRMT6 inhibits antiviral innate immunity by sequestering IRF3,thereby blocking TBK1-IRF3 signaling.Our work demonstrates a methyltransferase-independent role for PRMTs.It also identifies a negative regulator of the antiviral immune response,which may protect the host from the damaging effects of an overactive immune system and/or be exploited by viruses to escape immune detection.
文摘Correction to:Cellular&Molecular Immunology(2019)16,800–809;https://doi.org/10.1038/s41423-018-0057-4,published online 4 July 2018 In the published version of Fig.2d,the HE image for Prmt6+/+mice of the medium group was mistakenly presented.Figure 2d has now been corrected.The corrected version of Figure 2 is shown below.