期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mechanoresponsive MiR-138-5p Targets MACF1 to Inhibit Bone Formation 被引量:1
1
作者 Zhihao Chen Zhao Fan +14 位作者 Liang Chao Lifang Hu Chen Lei Zhang Yan Yin Chong Dijie Li Tian Ye Wuxia Qiu Kewen Zhang chaofei yang Xiaona Li Li Yu Weiyi Chen Zhang Ge Qian Airong 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期72-73,共2页
Mechanical stimuli play an essential role in maintaining bone remodeling and skeletal integrity.Meanwhile,bone can respond to the changes of mechanical condition to adjust its mass and architecture.Clinical studies di... Mechanical stimuli play an essential role in maintaining bone remodeling and skeletal integrity.Meanwhile,bone can respond to the changes of mechanical condition to adjust its mass and architecture.Clinical studies discover that bedridden patients showed osteoporotic T-scores and low bone mineral density,and long-term immobilized patients presented reduced markers of bone formation.However,as bone formation mediated by osteoblast differentiation is a complex process,the underlying molecular mechanism of mechanical stimuli regulating bone formation is still unclear.Recent evidences show that microRNAs(miRNAs)are involved in mechanical stimuli regulating bone formation or osteoblast differentiation.Nevertheless,no direct evidence identifies mechanoresponsive miRNA in both human and animal bones,and clarifies its mechanoresponsive role under different mechanical conditions(e.g.mechanical unloading,reloading,loading).In the current study,we screened for differentially expressed miRNAs in bone specimens of bedridden patients with fractures,then identified that the expression of miR-138-5p,but not the other miRNAs,altered withbedridden time and was negatively correlated with the expression of the bone formation marker genes Alp(alkaline phosphatase).Moreover,miR-138-5p was up-regulated with reduced bone formation during unloading and down-regulated with increased bone formation during reloading in hind4imb unloaded mice.In addition,miR-138-5p was verified to be responsive to different mechanical unloading condition and cyclic mechanical stretch condition in primary osteogenic cells,respectively.Further in vitro data suggested that mechanoresponsive miR-138-5p directly targeted microtubule actin crosslinking factor 1(MACF1)to inhibit osteoblast differentiation.In vivo,we constructed an osteoblastic miR-138-5p transgenic mice model(TG138)with the Runx2promoter,and found that overexpression miR-138-5p supressed bone formation.Moreover,osteoblast-targeted inhibition of miR-138-5p sensitized bone anabolic response to mechanical loading in TG138 mice.Predominantly,the osteoblast-targeted inhibition of miR-138-5p could counteract bone formation reduction induced by hind limb unloading.Taken together,the mechanoresponsive miR-138-5p inhibited bone anabolic response for developing a novel bone anabolic sensitization strategy. 展开更多
关键词 Mechanoresponse miR-138-5p MACF1 BONE FORMATION
原文传递
MACF1 deficiency suppresses tooth mineralization through IGF1 mediated crosstalk between odontoblasts and ameloblasts
2
作者 Wuxia Qiu Xiao Lin +8 位作者 Shaoqing yang Zhihao Chen Kewen Zhang chaofei yang Yu Li Zhiping Miao Xiaoni Deng Xiaohong Duan Airong Qian 《Genes & Diseases》 SCIE CSCD 2024年第5期9-12,共4页
Tooth mineralization is a ubiquitous and tightly regulated process involving complicated interactions between dental epithelium and mesenchyme.Key molecules in tooth mineralization remain poorly identified.Microtubule... Tooth mineralization is a ubiquitous and tightly regulated process involving complicated interactions between dental epithelium and mesenchyme.Key molecules in tooth mineralization remain poorly identified.Microtubule actin cross-linking factor 1(MACF1)is a spectraplakin protein that plays pivotal roles in the brain,muscle,lung,and bone developmental process.^(1-3) To study the specific functions of MACF1 in bone formation,we established Macf1 conditional knockout mice using the Cre-LoxP system driven by Osxterix promoter(Osx-Cre;Macf1^(f/f)).^(2) Not surprisingly,Osx-Cre;Macf1^(f/f) mice displayed the phenotypes of delayed ossification and decreased bone mass.Moreover,the OsxCre;Macf1^(f/f) mice unexpectedly showed a white and opaque appearance of incisors,contrary to the normal yellowbrown and transparent incisors.Since Osxterix is expressed in dental mesenchyme during tooth development,the abnormal tooth appearance might imply a new function of MACF1 in odontoblasts,or even ameloblasts.Therefore,the present study aimed to investigate the role of MACF1 during tooth development. 展开更多
关键词 MINERALIZATION linking transparent
原文传递
Microtubule actin crosslinking factor 1 functions as a novel therapeutic target in lung metastasis of osteosarcoma
3
作者 chaofei yang Ye Tian +7 位作者 Fan Zhao Qian Huang Zhiyong Liu Chenyang He Hui Li Yu li Zhiping Miao Airong Qian 《Genes & Diseases》 SCIE CSCD 2023年第2期325-328,共4页
Lung metastasis is the primary cause of death in osteosarcoma(OS)patients.1 A better understanding of the molecular mechanisms underlying OS tumorigenesis and metastasis is urgently needed to identify therapeutic targ... Lung metastasis is the primary cause of death in osteosarcoma(OS)patients.1 A better understanding of the molecular mechanisms underlying OS tumorigenesis and metastasis is urgently needed to identify therapeutic targets.Microtubule actin crosslinking factor 1(MACF1),which belongs to the spectraplakin family of cytoskeletal crosslinking proteins,2 is critical for cell migration and polarization due to its regulation of the cytoskeleton.Recently,MACF1 was indicated to be involved in the metastatic invasion of some human cancers,3 but the function of MACF1 in OS is still unclear. 展开更多
关键词 METASTASIS OSTEOSARCOMA THERAPEUTIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部