The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in th...The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in the Shenhu area, northern South China Sea, where China's first marine hydrate exploitation operation is due to be located. The validation of the undrained shear strength prediction model based on CPTU parameters. Different laboratory tests, including pocket penetrometer, torvane, miniature vane and unconsolidated undrained triaxial tests, are employed to solve empirical cone coefficients by statistical and mathematical methods. Finally, an optimized model is proposed to describe the longitudinal distribution of undrained shear strength in calcareous clay strata in the Shenhu area. Research results reveal that average empirical cone coefficients based on total cone resistance, effective resistance, and excess-pore pressure are 13.8, 4.2 and 14.4, respectively. The undrained shear strength prediction model shows a good fit with the laboratory results only within specific intervals based on their compaction degree and gas-bearing conditions. The optimized prediction model in piecewise function format can be used to describe the longitudinal distribution of the undrained shear strength for calcareous clay within all depth intervals from the mud-line to the upper boundary of hydrate-bearing sediments(HBS). The optimized prediction result indicates that the effective cone resistance model is suitable for very soft to firm calcareous clays,the excess-pore pressure model can depict the undrained shear strength for firm to very stiff but gas-free clays,while the total cone resistance model is advantageous for evaluating the undrained shear strength for very stiff and gassy clays. The optimized model in piecewise function format can considerably improve the adaptability of empirical models for calcareous clay in the Shenhu area. These results are significant for safety evaluations of proposed hydrate exploitation projects.展开更多
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and se...For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.展开更多
The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this pape...The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this paper, we discussed the geochemical anomaly during hydrate formation in porous media. By doing so, we also investigated the temperature influence on hydrate formation under isobaric condition. It turns out that sub-cooling is an important factor to dominate hydrate formation. Larger subcooling provides more powerful driving force for hydrate formation. During the geochemical anomaly research, six kinds of ions and the total dissolved salt (TDS) were measured before and after the experiment in different porous media. The result is that all kinds of ionic concentration increased after hydrate formation which can be defined as salting out effect mainly affected by gas consumption. But the variation ratio of different ions is not equal. Ca^2+ seems to be the most significantly influenced one, and its variation ratio is up to 80%. Finally, we theoretically made a model to calculate the TDS variation, the result is in good accordance with measured one, especially when gas consumption is large.展开更多
Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic e...Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic evolutionary behaviors are still not fully understood due to the lack of methods and experimental systems.Toward this goal,we built a two-dimensional electrical resistivity tomography(ERT)apparatus capable of measuring spatial and temporal characteristics of hydrate-bearing porous media.Beach sand(0.05–0.85 mm)was used to form artificial methane hydrate-bearing sediment.The experiments were conducted at 1°C under excess water conditions and the ERT data were acquired and analyzed.This study demonstrates the utility of the ERT method for hydrate mapping in laboratory-scale.The results indicate that the average electrical conductivity decreases nonlinearly with the formation of the hydrate.At some special time-intervals,the average conductivity fluctuates within a certain scope.The plane conductivity fields evolve heterogeneously and the local preferential hydrate-forming positions alternate throughout the experimental duration.We speculate that the combination of hydrate formation itself and salt-removal effect plays a dominant role in the spatial and temporal hydrate distribution,as well as geophysical parameters changing behaviors during hydrate accumulation.展开更多
Clustered regularly interspaced short palindromic repeats(CRISPR)-Cas systems can be engineered as programmable transcription factors to either activate(CRISPRa)or inhibit transcription.Apomixis is extremely valuable ...Clustered regularly interspaced short palindromic repeats(CRISPR)-Cas systems can be engineered as programmable transcription factors to either activate(CRISPRa)or inhibit transcription.Apomixis is extremely valuable for the seed industry in breeding clonal seeds with pure genetic backgrounds.We report here a CRISPR/dCas9-based toolkit equippedwith dCas9-VP64 andMS2-p65-HSF1 effectors that may specifically target genes with high activation capability.We explored the application of in vivo CRISPRa targeting of maize BABY BOOM2(ZmBBM2),acting as a fertilization checkpoint,as a means to engineer parthenogenesis.We detected ZmBBM2 transcripts only in egg cells but not in other maternal gametic cells.Activation of ZmBBM2 in egg cells in vivo caused maternal cell-autonomous parthenogenesis to produce haploid seeds.Our work provides a highly specific gene-activation CRISPRa technology for target cells and verifies its application for parthenogenesis induction in maize.展开更多
基金The National Natural Science Foundation of China under contract No.41606078the Taishan Scholar Special Experts Project under contract No.ts201712079+1 种基金the National Key Research and Development Plan under contract No.2017YFC0307600the Open Fund of Qingdao National Laboratory for Marine Science and Technology of China under contract Nos QNLM2016ORP0203 and QNLM2016ORP0207
文摘The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in the Shenhu area, northern South China Sea, where China's first marine hydrate exploitation operation is due to be located. The validation of the undrained shear strength prediction model based on CPTU parameters. Different laboratory tests, including pocket penetrometer, torvane, miniature vane and unconsolidated undrained triaxial tests, are employed to solve empirical cone coefficients by statistical and mathematical methods. Finally, an optimized model is proposed to describe the longitudinal distribution of undrained shear strength in calcareous clay strata in the Shenhu area. Research results reveal that average empirical cone coefficients based on total cone resistance, effective resistance, and excess-pore pressure are 13.8, 4.2 and 14.4, respectively. The undrained shear strength prediction model shows a good fit with the laboratory results only within specific intervals based on their compaction degree and gas-bearing conditions. The optimized prediction model in piecewise function format can be used to describe the longitudinal distribution of the undrained shear strength for calcareous clay within all depth intervals from the mud-line to the upper boundary of hydrate-bearing sediments(HBS). The optimized prediction result indicates that the effective cone resistance model is suitable for very soft to firm calcareous clays,the excess-pore pressure model can depict the undrained shear strength for firm to very stiff but gas-free clays,while the total cone resistance model is advantageous for evaluating the undrained shear strength for very stiff and gassy clays. The optimized model in piecewise function format can considerably improve the adaptability of empirical models for calcareous clay in the Shenhu area. These results are significant for safety evaluations of proposed hydrate exploitation projects.
基金supported by the National Basic Research Program of China(No.2009CB219503)the Special Fund for Ministry of Land and Resources research of China in the Public Interest(201111026)the Natural Science Foundation of Shandong Province of China(No.ZR2009FQ017)
文摘For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.
基金Supported by Natural Gas Hydrate in China Sea Exploration and Evaluation Project (G2H200200202)National Basic ResearchProgram of China (973 Program, Grant No. 2009CB219503)
文摘The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this paper, we discussed the geochemical anomaly during hydrate formation in porous media. By doing so, we also investigated the temperature influence on hydrate formation under isobaric condition. It turns out that sub-cooling is an important factor to dominate hydrate formation. Larger subcooling provides more powerful driving force for hydrate formation. During the geochemical anomaly research, six kinds of ions and the total dissolved salt (TDS) were measured before and after the experiment in different porous media. The result is that all kinds of ionic concentration increased after hydrate formation which can be defined as salting out effect mainly affected by gas consumption. But the variation ratio of different ions is not equal. Ca^2+ seems to be the most significantly influenced one, and its variation ratio is up to 80%. Finally, we theoretically made a model to calculate the TDS variation, the result is in good accordance with measured one, especially when gas consumption is large.
基金The Taishan Scholar Special Experts Project of Shandong Province under contract No.ts201712079the National Natural Science Foundation of China under contract No.41976074the National Key Research and Development Program of China under contract No.2018YFE0126400。
文摘Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic evolutionary behaviors are still not fully understood due to the lack of methods and experimental systems.Toward this goal,we built a two-dimensional electrical resistivity tomography(ERT)apparatus capable of measuring spatial and temporal characteristics of hydrate-bearing porous media.Beach sand(0.05–0.85 mm)was used to form artificial methane hydrate-bearing sediment.The experiments were conducted at 1°C under excess water conditions and the ERT data were acquired and analyzed.This study demonstrates the utility of the ERT method for hydrate mapping in laboratory-scale.The results indicate that the average electrical conductivity decreases nonlinearly with the formation of the hydrate.At some special time-intervals,the average conductivity fluctuates within a certain scope.The plane conductivity fields evolve heterogeneously and the local preferential hydrate-forming positions alternate throughout the experimental duration.We speculate that the combination of hydrate formation itself and salt-removal effect plays a dominant role in the spatial and temporal hydrate distribution,as well as geophysical parameters changing behaviors during hydrate accumulation.
基金supported by the National Science Foundation of China(32001551 and 31771808)the China Postdoctoral Science Foundation(2020M680779)+1 种基金the Agricultural Science and Technology Innovation Program of the CAAS(S2022ZD03)Hainan Yazhou Bay Seed Laboratory(B21HJ0215).
文摘Clustered regularly interspaced short palindromic repeats(CRISPR)-Cas systems can be engineered as programmable transcription factors to either activate(CRISPRa)or inhibit transcription.Apomixis is extremely valuable for the seed industry in breeding clonal seeds with pure genetic backgrounds.We report here a CRISPR/dCas9-based toolkit equippedwith dCas9-VP64 andMS2-p65-HSF1 effectors that may specifically target genes with high activation capability.We explored the application of in vivo CRISPRa targeting of maize BABY BOOM2(ZmBBM2),acting as a fertilization checkpoint,as a means to engineer parthenogenesis.We detected ZmBBM2 transcripts only in egg cells but not in other maternal gametic cells.Activation of ZmBBM2 in egg cells in vivo caused maternal cell-autonomous parthenogenesis to produce haploid seeds.Our work provides a highly specific gene-activation CRISPRa technology for target cells and verifies its application for parthenogenesis induction in maize.