期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electromotive Force for Solid Oxide Fuel Cells Using Biomass Produced Gas as Fuel 被引量:2
1
作者 Wei Zhu Yan-hong Yin +2 位作者 Cen Gao chang-rong xia Guang-yao Meng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第4期325-328,共4页
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis... The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia. 展开更多
关键词 Biomass produced gas Electromotive force Solid oxide fuel cells Thermodynamic equilibrium
在线阅读 下载PDF
Ionic conductivity of infiltrated Ln (Ln = Gd, Sm, Y)-doped ceria 被引量:1
2
作者 Jiang-Wei Ju Dao-Ming Huan +2 位作者 Yan-xiang Zhang chang-rong xia Guang-Lei Cui 《Rare Metals》 SCIE EI CAS CSCD 2018年第9期734-742,共9页
This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- ... This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- heating processes, and the conductivity was determined with the electrochemical impedance spectroscopy (EIS) using the conductive model for infiltrated phases. The conductivity of the infiltrated doped ceria changes with the doping amount, and Gd0.25Ce0.75O2-δ, Sm0.2Ce0.8O2-δ, and Y0.15Ce0.85O2-δ show the highest values of 2.56, 3.01, and 2.07 × 10-3 S.cm-1 at 600 ℃, respectively. Overall, Sin-doped samples show the highest conductivity, whileY-doped samples show the lowest conductivity. In con- sideration of the Bruggeman factor, the intrinsic conduc- tivity of the infiltrated doped ceria was calculated. Compared with the bulk doped ceria, the intrinsic con- ductivity is higher while the activation energy is lower, which may suggest different conduction mechanisms. Besides, co-doping effects on the conductivity of the infiltrated sample are less obvious than those of the bulk sample. 展开更多
关键词 Doped ceria INFILTRATION Ionic conductivity Solid oxide fuel cell NANOPARTICLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部