期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Data Augmentation:A Multi-Perspective Survey on Data,Methods,and Applications
1
作者 canlin cui Junyu Yao Heng Xia 《Computers, Materials & Continua》 2025年第12期4275-4306,共32页
High-quality data is essential for the success of data-driven learning tasks.The characteristics,precision,and completeness of the datasets critically determine the reliability,interpretability,and effectiveness of su... High-quality data is essential for the success of data-driven learning tasks.The characteristics,precision,and completeness of the datasets critically determine the reliability,interpretability,and effectiveness of subsequent analyzes and applications,such as fault detection,predictive maintenance,and process optimization.However,for many industrial processes,obtaining sufficient high-quality data remains a significant challenge due to high costs,safety concerns,and practical constraints.To overcome these challenges,data augmentation has emerged as a rapidly growing research area,attracting considerable attention across both academia and industry.By expanding datasets,data augmentation techniques improve greater generalization and more robust performance in actual applications.This paper provides a comprehensive,multi-perspective review of data augmentation methods for industrial processes.For clarity and organization,existing studies are systematically grouped into four categories:small sample with low dimension,small sample with high dimension,large sample with low dimension,and large sample with high dimension.Within this framework,the review examines current research from both methodological and application-oriented perspectives,highlighting main methods,advantages,and limitations.By synthesizing these findings,this review offers a structured overview for scholars and practitioners,serving as a valuable reference for newcomers and experienced researchers seeking to explore and advance data augmentation techniques in industrial processes. 展开更多
关键词 DATA-DRIVEN data augmentation big data industrial application
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部