期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robust Multi-Label Cartoon Character Classification on the Novel Kral Sakir Dataset Using Deep Learning Techniques
1
作者 candan tumer Erdal Guvenoglu Volkan Tunali 《Computers, Materials & Continua》 2025年第12期5135-5158,共24页
Automated cartoon character recognition is crucial for applications in content indexing,filtering,and copyright protection,yet it faces a significant challenge in animated media due to high intra-class visual variabil... Automated cartoon character recognition is crucial for applications in content indexing,filtering,and copyright protection,yet it faces a significant challenge in animated media due to high intra-class visual variability,where characters frequently alter their appearance.To address this problem,we introduce the novel Kral Sakir dataset,a public benchmark of 16,725 images specifically curated for the task of multi-label cartoon character classification under these varied conditions.This paper conducts a comprehensive benchmark study,evaluating the performance of state-of-the-art pretrained Convolutional Neural Networks(CNNs),including DenseNet,ResNet,and VGG,against a custom baseline model trained from scratch.Our experiments,evaluated using metrics of F1-Score,accuracy,and Area Under the ROC Curve(AUC),demonstrate that fine-tuning pretrained models is a highly effective strategy.The best-performing model,DenseNet121,achieved an F1-Score of 0.9890 and an accuracy of 0.9898,significantly outperforming our baseline CNN(F1-Score of 0.9545).The findings validate the power of transfer learning for this domain and establish a strong performance benchmark.The introduced dataset provides a valuable resource for future research into developing robust and accurate character recognition systems. 展开更多
关键词 Cartoon character recognition multi-label classification deep learning transfer learning predictive modelling artificial intelligence-enhanced(AI-Enhanced)systems Kral Sakir dataset
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部