The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the exis...The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the existence of a basal or ubiquitous proteome. However, a number of discriminating proteins (32.0%) and specific proteins (39.8%) of the Brassica A and C genomes, respectively, were identified, which could represent potentially species-specific functions. Based on these A or C genome-specific proteins, a number of PCR-based markers to distinguish B. rapa and B. oleracea species were also developed.展开更多
The responses of sulfur (S) uptake assimilation-related genes' expression in roots of two rice cultivars to cadmium (Cd), bensulfuron-methyl (BSM) and their co-contamination (Cd+BSM) were investigated by gen...The responses of sulfur (S) uptake assimilation-related genes' expression in roots of two rice cultivars to cadmium (Cd), bensulfuron-methyl (BSM) and their co-contamination (Cd+BSM) were investigated by gene-chip microarray analysis and quantitative real-time PCR (QRT-PCR) technology. Treatments of Cd and Cd+BSM induced expression of sulfate transporter and permease genes, and promoted sulfate uptake in rice roots. Cd+BSM could alleviate Cd toxicity to cv. Fengmeizhan seedlings, probably due to Cd+BSM promoting greater S absorption by seedlings. Cd and Cd+BSM induced expression of sulfate assimilation-related genes, and thus activated the sulfur assimilation pathway. Cd and Cd+BSM induced expression of phytochelatin synthase and metallothionein genes, and induced expression of glutathione S-transferases (GSTs), glutathione synthase (GS) and S- containing antioxidation enzyme genes, which detoxified Cd2+. It is suggested that (to cope with the toxicity of Cd, BSM and their co-contamination) the S uptake and assimilation pathway was activated in rice roots by increased expression of related genes, thus enhancing the supply of organic S for synthesis of Cd or BSM resistance-related substances.展开更多
基金supported by the National Natural Science Foundation of China(No.30671166 and 30971812)the National Key Project 973(No.2006CB101603)
文摘The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the existence of a basal or ubiquitous proteome. However, a number of discriminating proteins (32.0%) and specific proteins (39.8%) of the Brassica A and C genomes, respectively, were identified, which could represent potentially species-specific functions. Based on these A or C genome-specific proteins, a number of PCR-based markers to distinguish B. rapa and B. oleracea species were also developed.
基金supported by the National Natural Science Foundation of China(No.20877101)the Special Fund for Agro-Scientific Research in the Public Interest(No.201103007)
文摘The responses of sulfur (S) uptake assimilation-related genes' expression in roots of two rice cultivars to cadmium (Cd), bensulfuron-methyl (BSM) and their co-contamination (Cd+BSM) were investigated by gene-chip microarray analysis and quantitative real-time PCR (QRT-PCR) technology. Treatments of Cd and Cd+BSM induced expression of sulfate transporter and permease genes, and promoted sulfate uptake in rice roots. Cd+BSM could alleviate Cd toxicity to cv. Fengmeizhan seedlings, probably due to Cd+BSM promoting greater S absorption by seedlings. Cd and Cd+BSM induced expression of sulfate assimilation-related genes, and thus activated the sulfur assimilation pathway. Cd and Cd+BSM induced expression of phytochelatin synthase and metallothionein genes, and induced expression of glutathione S-transferases (GSTs), glutathione synthase (GS) and S- containing antioxidation enzyme genes, which detoxified Cd2+. It is suggested that (to cope with the toxicity of Cd, BSM and their co-contamination) the S uptake and assimilation pathway was activated in rice roots by increased expression of related genes, thus enhancing the supply of organic S for synthesis of Cd or BSM resistance-related substances.