Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is s...Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is still needed.Here,the storage mechanism of Li^(+)in the tunnel structure of MnO_(2) as well as the dissolution and migration of Mn-ions were investigated based on multi-scale approaches.The Li/Mn ratio(at%)is determined at about 0.82 when the discharge voltage decreases to 2 V.The limited Li-ions transport rate in the bulk MnO_(2) restrains the reduction reaction,resulting in a low practical specific capacity.Moreover,utilizing spherical aberration-corrected transmission electron microscopy(TEM)coupled with electron energy loss spectroscopy(EELS),the presence of a mixed valence state layer of Mn^(2+)/Mn^(3+)/Mn^(4+)on the surface of the original 20 nm MnO_(2) particles was identified,which could contribute to the initial dissolution of Mn-ions.The battery separator exhibited channels for Mn-ions migration and diffusion and aggregated Mn particles.We put forward the discharge and degradation route in the ways of Mn-ions trajectories,and our findings provide a deep understanding of the high self-discharge rates and the capacity decay of Li-Mn primary batteries.展开更多
A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups,3,3'-dimethyl-4,4'-diaminophenyl-3",5"-di-tert-butyltoluene,was successfully synthesized by a simple coupling reac...A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups,3,3'-dimethyl-4,4'-diaminophenyl-3",5"-di-tert-butyltoluene,was successfully synthesized by a simple coupling reaction using 3,5-di-tert-butylbenzaldehyde and o-toluidine as starting materials.A series of novel polyimides(PI 3a-3c)with large pendant groups were prepared with the obtained diamine monomer and three different commercial aromatic dianhydrides(3,3',4,4'-biphenyltetracarboxylic dianhydride,4,4'-oxydiphthalic anhydride,and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride)by one-step high temperature polycondensation.The prepared polyimides exhibited high solubility and good membrane forming ability:they could be dissolved not only in some high boiling solvents such as DMF,NMP,DMAc,and m-Cresol at room temperature,but also in some low boiling solvents such as CHCl3,CH2Cl2,and THF.Their solubility in most solvents could exceed 10 wt%,and the flexible membranes could be obtained by casting their solutions.The prepared membranes exhibited good gas separation properties.The permeability coefficients of PI 3c for CO2 and O2 were up to 124.6 and 42.8 barrer,respectively,and the selectivity coefficients for CO2/CH4 and O2/N2 were 14.7 and 3.3,respectively.The membranes had light color and good optical transmission.Their optical transmittance at 450 nm wavelength was in the range of 67%-79%,and the cutoff wavelength was in the range of 310-348 nm.They also had good thermal properties with glass transition temperature(Tg)values in the range of 264-302℃.In addition,these membranes possessed good mechanical properties with tensile strength ranging between 77.8-87.4 MPa,initial modulus ranging between 1.69-1.82 GPa,and elongation at break ranging between 4.8%-6.1%.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U2030206,12104022,52271014 and 22075003)the Presidential Foundation of CAEP(No.YZJJZL2023173)Sichuan Science and Technology Program(No.2021YFH0092).
文摘Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is still needed.Here,the storage mechanism of Li^(+)in the tunnel structure of MnO_(2) as well as the dissolution and migration of Mn-ions were investigated based on multi-scale approaches.The Li/Mn ratio(at%)is determined at about 0.82 when the discharge voltage decreases to 2 V.The limited Li-ions transport rate in the bulk MnO_(2) restrains the reduction reaction,resulting in a low practical specific capacity.Moreover,utilizing spherical aberration-corrected transmission electron microscopy(TEM)coupled with electron energy loss spectroscopy(EELS),the presence of a mixed valence state layer of Mn^(2+)/Mn^(3+)/Mn^(4+)on the surface of the original 20 nm MnO_(2) particles was identified,which could contribute to the initial dissolution of Mn-ions.The battery separator exhibited channels for Mn-ions migration and diffusion and aggregated Mn particles.We put forward the discharge and degradation route in the ways of Mn-ions trajectories,and our findings provide a deep understanding of the high self-discharge rates and the capacity decay of Li-Mn primary batteries.
基金This work was finanially supported by the Key Research Project of Jiangsu Province(No.BE2017645)Scientifc Research and Innovation Project for Graduate Students in Jiangsu Province(No.KYCX19-1757)。and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups,3,3'-dimethyl-4,4'-diaminophenyl-3",5"-di-tert-butyltoluene,was successfully synthesized by a simple coupling reaction using 3,5-di-tert-butylbenzaldehyde and o-toluidine as starting materials.A series of novel polyimides(PI 3a-3c)with large pendant groups were prepared with the obtained diamine monomer and three different commercial aromatic dianhydrides(3,3',4,4'-biphenyltetracarboxylic dianhydride,4,4'-oxydiphthalic anhydride,and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride)by one-step high temperature polycondensation.The prepared polyimides exhibited high solubility and good membrane forming ability:they could be dissolved not only in some high boiling solvents such as DMF,NMP,DMAc,and m-Cresol at room temperature,but also in some low boiling solvents such as CHCl3,CH2Cl2,and THF.Their solubility in most solvents could exceed 10 wt%,and the flexible membranes could be obtained by casting their solutions.The prepared membranes exhibited good gas separation properties.The permeability coefficients of PI 3c for CO2 and O2 were up to 124.6 and 42.8 barrer,respectively,and the selectivity coefficients for CO2/CH4 and O2/N2 were 14.7 and 3.3,respectively.The membranes had light color and good optical transmission.Their optical transmittance at 450 nm wavelength was in the range of 67%-79%,and the cutoff wavelength was in the range of 310-348 nm.They also had good thermal properties with glass transition temperature(Tg)values in the range of 264-302℃.In addition,these membranes possessed good mechanical properties with tensile strength ranging between 77.8-87.4 MPa,initial modulus ranging between 1.69-1.82 GPa,and elongation at break ranging between 4.8%-6.1%.