In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The res...In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The results showed that the chromosome arm 1RS of Neuzucht was transmitted to 5 of the 7 types of Aimengniu, i.e., Aimengniu Ⅱ and Aimengniu Ⅳ-Aimengniu VII, no segment of t RS was identified in Aimengniu Ⅰ or Aimengniu Ⅲ. As for the 17 derivatives, the 1RS chromosome arm of Aimengniu was transmitted to 11 derivatives, part segments of 1RS were found in 1 derivative, while no segment was found in the remaining 5 ones. The results provided the evidence that molecular-marker technology was an efficient approach and suitable for analysis of the transmission of chromosome 1R.展开更多
Uppermost-internode diameter(UID)is a key morphological trait associated with spike development and yield potential in wheat.Our understanding of its genetic basis remains largely unknown.Here,quantitative trait loci(...Uppermost-internode diameter(UID)is a key morphological trait associated with spike development and yield potential in wheat.Our understanding of its genetic basis remains largely unknown.Here,quantitative trait loci(QTLs)for UID with high-density genetic maps were identified in five wheat recombinant inbred line(RIL)populations.In total,25 QTLs for UID were detected in five RIL populations,and they were located on chromosomes 1A,1D(3 QTL),2B(2),2D(3),3B,3D,4A,4B(3),4D,5A(5),5B(2),6B,and 7D.Of them,five major and stable QTLs(QUid.sau-2CN-1D.1,QUid.sau-2SY-1D,QUid.sau-QZ-2D,QUid.sau-SC-3D,and QUid.sau-AS-4 B)were identified from each of the five RIL populations in multiple environments.QUid.sau-2CN-1D.1,QUid.sau-2SY-1D and QUid.sau-SC-3D are novel QTLs.Kompetitive Allele Specific PCR(KASP)markers tightly linked to them were further investigated for developing near-isogenic lines(NILs)carrying the major loci.Furthermore,candidate genes at these intervals harboring major and stable QTLs were predicted,and they were associated with plant development and water transportation in most cases.Comparison of physical locations of the identified QTL on the‘Chinese Spring’reference genome showed that several QTLs including two major ones,QUid.sau-2CN-1D.1 and QUid.sau-2 SY-1 D,are likely allelic confirming their validity and effectiveness.The significant relationships detected between UID and other agronomic traits and a proper UID were discussed.Collectively,our results dissected the underlying genetic basis for UID in wheat and laid a foundation for further fine mapping and map-based cloning of these QTLs.展开更多
The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents...The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.‘Kenong 9204’(KN9204)is a candidate foundation parent characterized by ideotype,high yield potential,and particularly high nitrogen fertilizer utilization.To better understand the genetic basis of its high yield potential,high throughput whole-genome re-sequencing(10×)was performed on KN9204,its parental lines and its derivatives.A high-resolution genetic composition map of KN9204 was constructed,which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci(QTL)from a bi-parental mapping population.Xiaoyan 693(XY693),a wheat–Thinopyrum ponticum partial amphidiploid,contributed a great deal to the high yield potential of KN9204,and three major stable QTLs from XY693 were fine mapped.The transmissibility of key genomic segments from KN9204 to its derivatives were delineated,indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.Evidence for selection sweeps in the breeding programs was identified.This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.展开更多
基金supported by the National Basic Research Program of China (973 Program,2006CB101700)
文摘In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The results showed that the chromosome arm 1RS of Neuzucht was transmitted to 5 of the 7 types of Aimengniu, i.e., Aimengniu Ⅱ and Aimengniu Ⅳ-Aimengniu VII, no segment of t RS was identified in Aimengniu Ⅰ or Aimengniu Ⅲ. As for the 17 derivatives, the 1RS chromosome arm of Aimengniu was transmitted to 11 derivatives, part segments of 1RS were found in 1 derivative, while no segment was found in the remaining 5 ones. The results provided the evidence that molecular-marker technology was an efficient approach and suitable for analysis of the transmission of chromosome 1R.
基金supported by the projects from the National Natural Science Foundation of China(31971937 and 31970243)the Key Projects of Scientific and Technological Activities for Overseas Students of Sichuan Province,Chinathe Applied Basic Research Programs of Science and Technology Department of Sichuan Province,China(2020YJ0140)。
文摘Uppermost-internode diameter(UID)is a key morphological trait associated with spike development and yield potential in wheat.Our understanding of its genetic basis remains largely unknown.Here,quantitative trait loci(QTLs)for UID with high-density genetic maps were identified in five wheat recombinant inbred line(RIL)populations.In total,25 QTLs for UID were detected in five RIL populations,and they were located on chromosomes 1A,1D(3 QTL),2B(2),2D(3),3B,3D,4A,4B(3),4D,5A(5),5B(2),6B,and 7D.Of them,five major and stable QTLs(QUid.sau-2CN-1D.1,QUid.sau-2SY-1D,QUid.sau-QZ-2D,QUid.sau-SC-3D,and QUid.sau-AS-4 B)were identified from each of the five RIL populations in multiple environments.QUid.sau-2CN-1D.1,QUid.sau-2SY-1D and QUid.sau-SC-3D are novel QTLs.Kompetitive Allele Specific PCR(KASP)markers tightly linked to them were further investigated for developing near-isogenic lines(NILs)carrying the major loci.Furthermore,candidate genes at these intervals harboring major and stable QTLs were predicted,and they were associated with plant development and water transportation in most cases.Comparison of physical locations of the identified QTL on the‘Chinese Spring’reference genome showed that several QTLs including two major ones,QUid.sau-2CN-1D.1 and QUid.sau-2 SY-1 D,are likely allelic confirming their validity and effectiveness.The significant relationships detected between UID and other agronomic traits and a proper UID were discussed.Collectively,our results dissected the underlying genetic basis for UID in wheat and laid a foundation for further fine mapping and map-based cloning of these QTLs.
基金supported by the grants from the Shandong Major Basic Research Project of Natural Science Foundation,China(ZR2019ZD16)the Shandong Provincial Key Research and Development Program,China(2019GNC106126 and 2021LZGC009)+3 种基金the Natural Science Foundation of Hebei Province,China(C2021205013)the Hebei Scientific and Technological Innovation Team of Modern Wheat Seed Industry,China(21326318D)the National Natural Science Foundation of China(31871612,31901535,and 32101726)the China Agriculture Research System of MOF and MARA(CARS-03).
文摘The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.‘Kenong 9204’(KN9204)is a candidate foundation parent characterized by ideotype,high yield potential,and particularly high nitrogen fertilizer utilization.To better understand the genetic basis of its high yield potential,high throughput whole-genome re-sequencing(10×)was performed on KN9204,its parental lines and its derivatives.A high-resolution genetic composition map of KN9204 was constructed,which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci(QTL)from a bi-parental mapping population.Xiaoyan 693(XY693),a wheat–Thinopyrum ponticum partial amphidiploid,contributed a great deal to the high yield potential of KN9204,and three major stable QTLs from XY693 were fine mapped.The transmissibility of key genomic segments from KN9204 to its derivatives were delineated,indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.Evidence for selection sweeps in the breeding programs was identified.This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.