Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien...X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.展开更多
Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water spli...Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water splitting stands out as a promising approach for direct solar-driven hydrogen production.Enhancing the efficiency and stability of photoelectrodes is a key focus in PEC water-splitting research.Tantalum nitride(Ta_(3)N_(5)),with its suitable band gap and band-edge positions for PEC water splitting,has emerged as a highly promising photoanode material.This review begins by introducing the history and fundamental characteristics of Ta_(3)N_(5),emphasizing both its advantages and challenges.It then explores methods to improve light absorption efficiency,charge separation and transfer efficiency,surface reaction rate,and the stability of Ta_(3)N_(5) photoanodes.Additionally,the review discusses the progress of research on tandem PEC cells incorporating Ta_(3)N_(5) photoanodes.Finally,it looks ahead to future research directions for Ta_(3)N_(5) photoanodes.The strategic approach outlined in this review can also be applied to other photoelectrode materials,providing guidance for their development.展开更多
Bridged bicyclic cores have been recognized as valuable bioisosteres of benzene ring,which are of great value in medicinal chemistry.However,the development of fluorinated bicyclic skeletons,which encompass two privil...Bridged bicyclic cores have been recognized as valuable bioisosteres of benzene ring,which are of great value in medicinal chemistry.However,the development of fluorinated bicyclic skeletons,which encompass two privileged elements widely acknowledged for fine tuning the working effect of target molecules,are far less common.Herein,we present a general and practical synthesis of gem-difluorobicyclo[2.1.1]hexanes(diF-BCHs)from readily available difluorinated hexa-1,5-dienes through energy transfer photocatalysis.By taking advantage of an efficient Cope rearrangement,the preparation of both constitutional isomers of diF-BCHs is readily achieved under identical conditions.The operational simplicity,mild conditions and wide scope further highlight the potential application of this protocol.Moreover,computational studies indicated a positive effect of fluorine atoms in lowering either the triplet or FMO energies of the hexa-1,5-diene substrates,thus promoting the present photoinduced[2+2]cycloaddition.展开更多
Directional design of efficient catalysts for volatile organic compounds degradation remains a complex,yet effective and challenging process.Herein,oxygen-rich vacancy Co_(3)O_(4)-anchored Pt catalysts were prepared t...Directional design of efficient catalysts for volatile organic compounds degradation remains a complex,yet effective and challenging process.Herein,oxygen-rich vacancy Co_(3)O_(4)-anchored Pt catalysts were prepared through atom-trapping strategy and relevant vacancy defect inductive effect was proposed.The 0.6Pt/VO-Co_(3)O_(4)catalyst presented a reaction rate value of 32.2×10^(-5)mol·g_(cat)^(-1)·s^(-1)at 160℃for catalytic propane total oxidation,which was nearly 5 times the reaction rate of Co_(3)O_(4)(6.7×10^(-5)mol·g_(cat)^(-1)·s^(-1)).Also,it exhibited excellent water-resistance and catalytic stability.The Pt atoms were stabilized on the Co_(3)O_(4)surface by vacancy defects to improve dispersion.Meanwhile,the vacancy defect inductive effect induced stronger electron interaction between Pt and Co_(3)O_(4)on the surface,thus promote the redox ability at low-temperature.The mobility and oxygen-activating ability of surface lattice oxygen were also strengthened by the vacancy defect inductive effect.This facilitated the generation of more surface-active oxygen species for the cleavage of C-H bond and the deep oxidation of intermediate species.Overall,this study proposed a novel concept the fabrication of highly efficient catalysts for the purpose of catalytic oxidation.展开更多
The development of atomically dispersed platinum-based catalysts with high performance and welldefined active site structures is crucial for the commercialization of water electrolysis for hydrogen production.Herein,w...The development of atomically dispersed platinum-based catalysts with high performance and welldefined active site structures is crucial for the commercialization of water electrolysis for hydrogen production.Herein,we propose a coordination dual-shell synergistic regulation mechanism of coal pitchderived carbon-supported single atom Pt-N_(x)O_(y)-S_(1)catalytic sites by a self-assembly-pyrolysis strategy for promoting hydrogen evolution reaction(HER).The Pt-N_(3)O1-S_(1)sites exhibited the highest HER performance,with an overpotential of 92 mV at a current density of 400 mA cm^(-2).At 50 mV,the turnover frequency was 34.04 s^(-1)and the mass activity was 22.83 A mg_(Pt)^(-l),which is 63.4 times that of the 20%Pt/C catalyst.Theoretical calculations revealed that the coordination dual-shell impacts the electronic structure of the Pt atoms and the adsorption strength towards reactants synergistically.The S atoms in the second coordination shell weakened the strength of Pt-N first shell,resulting the more surface valence electrons around Pt atoms,exhibiting the most suitable adsorption free energy and enhancing the adsorption of H^(+)on Pt-N_(3)O_(1)-S_(1)sites,thus enhancing the electrocatalytic HER process by promoting Volmer step.This work reveals that coordination dual-shell synergistic regulation is an effective strategy for enhancing the electrocatalytic reaction process.展开更多
It is well known that transition metal sulfides(TMS)(i.e.,NiS_(2))undergo electrochemical reconstructions to generate highly active Ni_(3)S_(2) during the process of hydrogen evolution reaction(HER)under overpotential...It is well known that transition metal sulfides(TMS)(i.e.,NiS_(2))undergo electrochemical reconstructions to generate highly active Ni_(3)S_(2) during the process of hydrogen evolution reaction(HER)under overpotentials of<500 mV.However,at higher overpotentials,Ni_(3)S_(2) can theoretically be further restructured into Ni and thus form Ni/Ni_(3)S_(2) heterogeneous interface structures,which may provide opportunities to further enhance HER activity of NiS_(2).Here,we selected NiS_(2) as a model electrocatalyst and investigated the influence of the reconstruction results induced from regular to ultrahigh overpotentials on its electrocatalytic hydrogen precipitation performance.The experimental results showed that the most significant enhancement of hydrogen precipitation performance was obtained for the NiS_(2)@CC-900(900 means 900 mV overpotential)sample after the ultra-high overpotential induced reconstruction.Compared with the initial overpotential of 161 mV(10 mA cm^(-2)),the overpotential of the reconstructed sample reduced by 67 mV(42%).The characterization results showed that an ultra-high overpotential of 900 mV induced deep reconstruction of NiS_(2),formed highly reactive Ni/Ni_(3)S_(2) heterogeneous interfaces,which is more conducive to improved HER performance and match well with theoretical calculations results.We demonstrated ultrahigh overpotential was an effective strategy to induce NiS_(2) deeply reconstruction and significantly improve its HER performance,and this strategy was also applicable to CoS_(2) and FeS_(2).This study provides an extremely simple and universal pathway for the reasonable construction of efficient electrocatalysts by induced TMS deeply reconstruction.展开更多
Herein,we report an iron-promoted carbonylation-rearrangement ofα-aminoaryl-tethered alkylidene cyclopropanes with CO_(2)to generate quinolinofuran derivatives.A variety of quinolinofuran derivatives are obtained in ...Herein,we report an iron-promoted carbonylation-rearrangement ofα-aminoaryl-tethered alkylidene cyclopropanes with CO_(2)to generate quinolinofuran derivatives.A variety of quinolinofuran derivatives are obtained in moderate to excellent yields,and two promising luminescent material molecules have been synthesized using the developed method.The Lewis acid Fe Cl_(3)was introduced into this reaction,which effectively promoted the ring opening and rearrangement of cyclopropanes.This reaction features a broad substrate scope,satisfactory functional group tolerance,facile scalability,and easy derivatization of the products.展开更多
As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomech...As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
基金supported by the National Grand Instrument Project No. SQ2019YFF01014400the Natural Science Foundation of China (Grant Nos. 12375147, 12435011, 12075030)+2 种基金the Beijing Outstanding Young Scientist Project, Project for Young Scientists in Basic Research of Chinese Academy of Sciences (YSBR-115)the Beijing Normal University Scientific Research Initiation Fund for Introducing Talents No. 310432104the Fundamental Research Funds for the Central Universities, Peking University
文摘X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.
文摘Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water splitting stands out as a promising approach for direct solar-driven hydrogen production.Enhancing the efficiency and stability of photoelectrodes is a key focus in PEC water-splitting research.Tantalum nitride(Ta_(3)N_(5)),with its suitable band gap and band-edge positions for PEC water splitting,has emerged as a highly promising photoanode material.This review begins by introducing the history and fundamental characteristics of Ta_(3)N_(5),emphasizing both its advantages and challenges.It then explores methods to improve light absorption efficiency,charge separation and transfer efficiency,surface reaction rate,and the stability of Ta_(3)N_(5) photoanodes.Additionally,the review discusses the progress of research on tandem PEC cells incorporating Ta_(3)N_(5) photoanodes.Finally,it looks ahead to future research directions for Ta_(3)N_(5) photoanodes.The strategic approach outlined in this review can also be applied to other photoelectrode materials,providing guidance for their development.
基金the National Natural Science Foundation of China(No.22271151)the Distinguished Youth Foundation of Jiangsu Province.
文摘Bridged bicyclic cores have been recognized as valuable bioisosteres of benzene ring,which are of great value in medicinal chemistry.However,the development of fluorinated bicyclic skeletons,which encompass two privileged elements widely acknowledged for fine tuning the working effect of target molecules,are far less common.Herein,we present a general and practical synthesis of gem-difluorobicyclo[2.1.1]hexanes(diF-BCHs)from readily available difluorinated hexa-1,5-dienes through energy transfer photocatalysis.By taking advantage of an efficient Cope rearrangement,the preparation of both constitutional isomers of diF-BCHs is readily achieved under identical conditions.The operational simplicity,mild conditions and wide scope further highlight the potential application of this protocol.Moreover,computational studies indicated a positive effect of fluorine atoms in lowering either the triplet or FMO energies of the hexa-1,5-diene substrates,thus promoting the present photoinduced[2+2]cycloaddition.
文摘Directional design of efficient catalysts for volatile organic compounds degradation remains a complex,yet effective and challenging process.Herein,oxygen-rich vacancy Co_(3)O_(4)-anchored Pt catalysts were prepared through atom-trapping strategy and relevant vacancy defect inductive effect was proposed.The 0.6Pt/VO-Co_(3)O_(4)catalyst presented a reaction rate value of 32.2×10^(-5)mol·g_(cat)^(-1)·s^(-1)at 160℃for catalytic propane total oxidation,which was nearly 5 times the reaction rate of Co_(3)O_(4)(6.7×10^(-5)mol·g_(cat)^(-1)·s^(-1)).Also,it exhibited excellent water-resistance and catalytic stability.The Pt atoms were stabilized on the Co_(3)O_(4)surface by vacancy defects to improve dispersion.Meanwhile,the vacancy defect inductive effect induced stronger electron interaction between Pt and Co_(3)O_(4)on the surface,thus promote the redox ability at low-temperature.The mobility and oxygen-activating ability of surface lattice oxygen were also strengthened by the vacancy defect inductive effect.This facilitated the generation of more surface-active oxygen species for the cleavage of C-H bond and the deep oxidation of intermediate species.Overall,this study proposed a novel concept the fabrication of highly efficient catalysts for the purpose of catalytic oxidation.
基金supported by the National Natural Science Foundation of China(22108306,22478432 and 22406191)Taishan Scholars Program of Shandong Province(tsqn201909065)the Natural Science Foundation of Shandong Province(ZR2024JQ004,ZR2021YQ15)。
文摘The development of atomically dispersed platinum-based catalysts with high performance and welldefined active site structures is crucial for the commercialization of water electrolysis for hydrogen production.Herein,we propose a coordination dual-shell synergistic regulation mechanism of coal pitchderived carbon-supported single atom Pt-N_(x)O_(y)-S_(1)catalytic sites by a self-assembly-pyrolysis strategy for promoting hydrogen evolution reaction(HER).The Pt-N_(3)O1-S_(1)sites exhibited the highest HER performance,with an overpotential of 92 mV at a current density of 400 mA cm^(-2).At 50 mV,the turnover frequency was 34.04 s^(-1)and the mass activity was 22.83 A mg_(Pt)^(-l),which is 63.4 times that of the 20%Pt/C catalyst.Theoretical calculations revealed that the coordination dual-shell impacts the electronic structure of the Pt atoms and the adsorption strength towards reactants synergistically.The S atoms in the second coordination shell weakened the strength of Pt-N first shell,resulting the more surface valence electrons around Pt atoms,exhibiting the most suitable adsorption free energy and enhancing the adsorption of H^(+)on Pt-N_(3)O_(1)-S_(1)sites,thus enhancing the electrocatalytic HER process by promoting Volmer step.This work reveals that coordination dual-shell synergistic regulation is an effective strategy for enhancing the electrocatalytic reaction process.
文摘It is well known that transition metal sulfides(TMS)(i.e.,NiS_(2))undergo electrochemical reconstructions to generate highly active Ni_(3)S_(2) during the process of hydrogen evolution reaction(HER)under overpotentials of<500 mV.However,at higher overpotentials,Ni_(3)S_(2) can theoretically be further restructured into Ni and thus form Ni/Ni_(3)S_(2) heterogeneous interface structures,which may provide opportunities to further enhance HER activity of NiS_(2).Here,we selected NiS_(2) as a model electrocatalyst and investigated the influence of the reconstruction results induced from regular to ultrahigh overpotentials on its electrocatalytic hydrogen precipitation performance.The experimental results showed that the most significant enhancement of hydrogen precipitation performance was obtained for the NiS_(2)@CC-900(900 means 900 mV overpotential)sample after the ultra-high overpotential induced reconstruction.Compared with the initial overpotential of 161 mV(10 mA cm^(-2)),the overpotential of the reconstructed sample reduced by 67 mV(42%).The characterization results showed that an ultra-high overpotential of 900 mV induced deep reconstruction of NiS_(2),formed highly reactive Ni/Ni_(3)S_(2) heterogeneous interfaces,which is more conducive to improved HER performance and match well with theoretical calculations results.We demonstrated ultrahigh overpotential was an effective strategy to induce NiS_(2) deeply reconstruction and significantly improve its HER performance,and this strategy was also applicable to CoS_(2) and FeS_(2).This study provides an extremely simple and universal pathway for the reasonable construction of efficient electrocatalysts by induced TMS deeply reconstruction.
基金the financial support from the National Natural Science Foundation of China(Nos.21801025,22225106)Natural Science Foundation of Sichuan Province(No.2022NSFSC0200)Sichuan Science and Technology Program(No.MZGC20230100)。
文摘Herein,we report an iron-promoted carbonylation-rearrangement ofα-aminoaryl-tethered alkylidene cyclopropanes with CO_(2)to generate quinolinofuran derivatives.A variety of quinolinofuran derivatives are obtained in moderate to excellent yields,and two promising luminescent material molecules have been synthesized using the developed method.The Lewis acid Fe Cl_(3)was introduced into this reaction,which effectively promoted the ring opening and rearrangement of cyclopropanes.This reaction features a broad substrate scope,satisfactory functional group tolerance,facile scalability,and easy derivatization of the products.
文摘As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics.