An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk GaAs, InAs and In0.3Ga0.7As. In particular, velocity overshoot and electron transit times are examined. We find the steady sta...An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk GaAs, InAs and In0.3Ga0.7As. In particular, velocity overshoot and electron transit times are examined. We find the steady state velocity of the electrons is the most important factor determining transit time over distances longer then 0.2 μm. Over shorter distances velocity overshoot effects in InAs and In0.3Ga0.7 As at high fields are comparable to those in GaAs. We estimate the minimum transit time across a 1 μm InAs sample to be about 4.2 ps. Similar calculations for In0.3Ga0.7As yield 6 ps (for GaAs yield 10 ps). Calculations are made using a nonparabolic effective mass energy band model, Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models.展开更多
We present the drain current modulation for an HEMT using the TCAD SILVACO simulation tool with a drift–diffusion model at ambient temperature. The obtained results show that the decreases of substrate energies induc...We present the drain current modulation for an HEMT using the TCAD SILVACO simulation tool with a drift–diffusion model at ambient temperature. The obtained results show that the decreases of substrate energies induce the decreasing of the obtained drain current similarly to the transconductance, which described the device due to increasing the transferred electrons concentration towards the substrate region, consequently to increase the molar fraction where the concentration of transferred electrons increases from 49 × 10;to 65 × 10;cm;when the molar fraction increases from 0.1 to 0.9. On the other hand, the decrease of molar fraction from 0.9 to 0.1 induces the increasing of drain current by 63%, where it increases from 1.1 mA/mm to 3 mA/mm at V;= 0.6 V and V;= 1 V. This fact leads to ensuring the possibility of using the obtained results of this work related to drain current for producing performances devices that brings together the AC characteristics of HEMT with a weak drain current, which is important in the bioengineering domain.展开更多
文摘An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk GaAs, InAs and In0.3Ga0.7As. In particular, velocity overshoot and electron transit times are examined. We find the steady state velocity of the electrons is the most important factor determining transit time over distances longer then 0.2 μm. Over shorter distances velocity overshoot effects in InAs and In0.3Ga0.7 As at high fields are comparable to those in GaAs. We estimate the minimum transit time across a 1 μm InAs sample to be about 4.2 ps. Similar calculations for In0.3Ga0.7As yield 6 ps (for GaAs yield 10 ps). Calculations are made using a nonparabolic effective mass energy band model, Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models.
文摘We present the drain current modulation for an HEMT using the TCAD SILVACO simulation tool with a drift–diffusion model at ambient temperature. The obtained results show that the decreases of substrate energies induce the decreasing of the obtained drain current similarly to the transconductance, which described the device due to increasing the transferred electrons concentration towards the substrate region, consequently to increase the molar fraction where the concentration of transferred electrons increases from 49 × 10;to 65 × 10;cm;when the molar fraction increases from 0.1 to 0.9. On the other hand, the decrease of molar fraction from 0.9 to 0.1 induces the increasing of drain current by 63%, where it increases from 1.1 mA/mm to 3 mA/mm at V;= 0.6 V and V;= 1 V. This fact leads to ensuring the possibility of using the obtained results of this work related to drain current for producing performances devices that brings together the AC characteristics of HEMT with a weak drain current, which is important in the bioengineering domain.