A Cu-10wt%Fe composite was prepared through hot-pressed sintering,and the material was subsequently solution treated.The hot-pressed sintered and solution treated materials were rolled and aged.The precipitation behav...A Cu-10wt%Fe composite was prepared through hot-pressed sintering,and the material was subsequently solution treated.The hot-pressed sintered and solution treated materials were rolled and aged.The precipitation behavior and performance changes were systematically studied by using scanning electron microscopy and transmission electron microscopy.In contrast to the hot-pressed sintered specimen,the solution treatment significantly affects the thermal stability and properties of the Cu-10wt%Fe composite.The Cu-10wt%Fe composite was prepared after solid solution,cold rolling and aging at 773 K for 1 h,and it obtained excellent tensile strength of 494 MPa,uniform elongation of 16.3%,electrical conductivity of 51.1%IACS and softening temperature of 838 K.Mechanisms for the distinct difference in thermal stability and properties between hot-pressed sintered and solution treated specimens were analyzed.These findings provide a theoretical basis for designing high-performance Cu-based in-situ composites by post treatment.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.52101181).
文摘A Cu-10wt%Fe composite was prepared through hot-pressed sintering,and the material was subsequently solution treated.The hot-pressed sintered and solution treated materials were rolled and aged.The precipitation behavior and performance changes were systematically studied by using scanning electron microscopy and transmission electron microscopy.In contrast to the hot-pressed sintered specimen,the solution treatment significantly affects the thermal stability and properties of the Cu-10wt%Fe composite.The Cu-10wt%Fe composite was prepared after solid solution,cold rolling and aging at 773 K for 1 h,and it obtained excellent tensile strength of 494 MPa,uniform elongation of 16.3%,electrical conductivity of 51.1%IACS and softening temperature of 838 K.Mechanisms for the distinct difference in thermal stability and properties between hot-pressed sintered and solution treated specimens were analyzed.These findings provide a theoretical basis for designing high-performance Cu-based in-situ composites by post treatment.