Microstructure evolutions of the medium-manganese wear-resistant steel Fe-8Mn-1C-1.2Cr-0.2V (in wt.%) with stacking-fault energy of 22 mJ m-2 during deformation at strain rate ranging of 10^-2-1 s^-1 were analyzed by ...Microstructure evolutions of the medium-manganese wear-resistant steel Fe-8Mn-1C-1.2Cr-0.2V (in wt.%) with stacking-fault energy of 22 mJ m-2 during deformation at strain rate ranging of 10^-2-1 s^-1 were analyzed by means of X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicate that the twinning-induced plasticity effect is the main strengthening mechanism of the studied steel, whilst the transformation-induced plasticity effect only occurs at high strain rate. With an increase in strain rate, volume fraction of the deformation twins, in particular that of the secondary twins, increases significantly along with decreasing average size. When applied strain rate is higher than 10^-1 s^-1, the parallel deformation twins are turned into a crossing morphology, and the original straight twin boundaries exhibit a ladder feature, which is attributed to the interactions between regular dislocations and twin dislocations at the twin boundary. The critical strain, a key indicator of the initiation of deformation twin, decreases with increasing strain rate. In addition, the ductility and strength of medium-manganese wear-resistant steel Fe-8Mn-1C-1.2Cr-0.2V are mainly determined by the shape and volume fraction of deformation twins.展开更多
The deformation mechanisms and the flow stress behavior of a medium-manganese high-carbon steel during cold deformation at a strain rate of 10×5 s^-1 were explored using a universal testing machine,an X-ray diffr...The deformation mechanisms and the flow stress behavior of a medium-manganese high-carbon steel during cold deformation at a strain rate of 10×5 s^-1 were explored using a universal testing machine,an X-ray diffractometer,a field emission scanning electron microscope and a high-resolution transmission electron microscope.The results show that continuous step-up serrated flow behavior appears after the yielding point,and the true stress-strain curve is roughly divided into five stages based on distinctive densities and amplitudes of serration.The strengthening mechanisms of the experimental steel involve Cottrell atmosphere,twinning-induced plasticity(TWIP)efect and transformation-induced plasticity(TRIP)effect.TWIP effect is the dominant deformation mechanism,and deformation twins formed by TWIP effect comprise primary,secondary and nanotwins.Furthermore,TRIP effect arises in the local high-strain region.Carbon element plays a key role in the transformation of the deformation mechanism.A small amount of carbide precipitates around twin boundaries lead to the formation of local carbon-poor regions,and Md temperature and stacking fault energy of medium-manganese high-carbon steel are propitious to the occurrence of TRIP effect.In addition,the contributions of various deformation mechanisms to plasticity are calculated,and that of TWIP effect is the greatest.展开更多
The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-n...The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-nitrogen nickel-free austenitic stainless steel were systematically explored.The results show that stacking faults and planar slip bands appearing at the right amount of deformation(lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization.The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth,accompanying with the growth of twin-related domain in the experimental steel.In this way,the fraction of low ∑ coincidence site lattice(CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h.After GBCD optimization,low ∑ CSL boundaries and the special triple junctions(J2,J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest,thus improving the IGSCC resistance of the experimental steel.展开更多
The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to meas...The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.展开更多
基金The authors gratefully appreciate the financial support by the National Natural Science Foundation of China (Grant Nos. 51471048 and U1860201)the Basic Research Program of Key Laboratory of Liaoning Province (LZ2015035).
文摘Microstructure evolutions of the medium-manganese wear-resistant steel Fe-8Mn-1C-1.2Cr-0.2V (in wt.%) with stacking-fault energy of 22 mJ m-2 during deformation at strain rate ranging of 10^-2-1 s^-1 were analyzed by means of X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicate that the twinning-induced plasticity effect is the main strengthening mechanism of the studied steel, whilst the transformation-induced plasticity effect only occurs at high strain rate. With an increase in strain rate, volume fraction of the deformation twins, in particular that of the secondary twins, increases significantly along with decreasing average size. When applied strain rate is higher than 10^-1 s^-1, the parallel deformation twins are turned into a crossing morphology, and the original straight twin boundaries exhibit a ladder feature, which is attributed to the interactions between regular dislocations and twin dislocations at the twin boundary. The critical strain, a key indicator of the initiation of deformation twin, decreases with increasing strain rate. In addition, the ductility and strength of medium-manganese wear-resistant steel Fe-8Mn-1C-1.2Cr-0.2V are mainly determined by the shape and volume fraction of deformation twins.
基金The authors gratefully appreciate the financial support by the National Natural Science Foundation of China(Grant Nos.U1860201 and U1960115)the Basic Research Program of Key Laboratory of Liaoning Province(LZ2015035).
文摘The deformation mechanisms and the flow stress behavior of a medium-manganese high-carbon steel during cold deformation at a strain rate of 10×5 s^-1 were explored using a universal testing machine,an X-ray diffractometer,a field emission scanning electron microscope and a high-resolution transmission electron microscope.The results show that continuous step-up serrated flow behavior appears after the yielding point,and the true stress-strain curve is roughly divided into five stages based on distinctive densities and amplitudes of serration.The strengthening mechanisms of the experimental steel involve Cottrell atmosphere,twinning-induced plasticity(TWIP)efect and transformation-induced plasticity(TRIP)effect.TWIP effect is the dominant deformation mechanism,and deformation twins formed by TWIP effect comprise primary,secondary and nanotwins.Furthermore,TRIP effect arises in the local high-strain region.Carbon element plays a key role in the transformation of the deformation mechanism.A small amount of carbide precipitates around twin boundaries lead to the formation of local carbon-poor regions,and Md temperature and stacking fault energy of medium-manganese high-carbon steel are propitious to the occurrence of TRIP effect.In addition,the contributions of various deformation mechanisms to plasticity are calculated,and that of TWIP effect is the greatest.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 52171108)the Fundamental Research Funds for the Central Universities(Grant Nos.N2002014 and N2202011)。
文摘The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-nitrogen nickel-free austenitic stainless steel were systematically explored.The results show that stacking faults and planar slip bands appearing at the right amount of deformation(lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization.The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth,accompanying with the growth of twin-related domain in the experimental steel.In this way,the fraction of low ∑ coincidence site lattice(CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h.After GBCD optimization,low ∑ CSL boundaries and the special triple junctions(J2,J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest,thus improving the IGSCC resistance of the experimental steel.
基金supported by the National Key Research and Development Program of China(No.2022YFF0503303)the National Natural Science Foundation of China(Nos.12220101003,12275266,12003076,12022503,12103094 and U2031149)+8 种基金Outstanding Youth Science Foundation of NSFC(No.12022503)the Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(No.YSBR-061)the Strategic Priority Program on Space Science of Chinese Academy of Sciences(No.E02212A02S)the Youth Innovation Promotion Association of CAS(No.2021450)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220197)the New Cornerstone Science Foundation through the XPLORER PRIZEthe Program for Innovative Talents and Entrepreneur in Jiangsu.In Europesupported by the Swiss National Science Foundation(SNSF),Switzerland,the National Institute for Nuclear Physics(INFN),Italythe European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.851103).
文摘The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.