Due to their hexagonal crystal structure,magnesium alloys have relatively low workability at room temperature.In this study,the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot co...Due to their hexagonal crystal structure,magnesium alloys have relatively low workability at room temperature.In this study,the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing,numerical modeling and microstructural analyses.Hot deformation tests are performed at temperatures of 250℃ to 400℃ under strain rates of 0.01 to 1.0 s^(−1).Transmission electron microscopy is used to reveal the presence of dynamic recrystallization(DRX),dynamic recovery(DRY),cracks and shear bands.To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy,the authors use Johnson–Cook damage model in a 3D finite element simulation.The optimal hot workability of magnesium alloy is found at a temperature(T)of 400℃ and strain rate(ε)of 0.01 s^(−1).Stability is found at a lower strain rate,and instability is found at a higher strain rate.展开更多
AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the ...AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the standard pin-on-disc wear test equipment. The tests were conducted under a normal load of 10 N at different sliding speeds ranging from 0.60 to 1.2 m/s for distance up to 2000 m. The wear mechanisms of the worn out surface were studied using SEM analysis. The influence of test parameters on wear rate of the pins was established using a linear regression model statistically. Compared with the AZ31B magnesium alloy, the nano-composite shows lower wear rates due to higher hardness improvement caused by the reinforcement. The wear mechanism appears to be a mix-up of ploughing, rows of furrows, delamination and oxidation.展开更多
In this article,we study the approximate controllability results for an integroquasilinear evolution equation with random impulsive moments under sufficient conditions.The results are obtained by the theory of C0 semi...In this article,we study the approximate controllability results for an integroquasilinear evolution equation with random impulsive moments under sufficient conditions.The results are obtained by the theory of C0 semigroup of bounded linear operators on evolution equations and using trajectory reachable sets.Finally,we generalize the results too with and without fixed type impulsive moments.展开更多
文摘Due to their hexagonal crystal structure,magnesium alloys have relatively low workability at room temperature.In this study,the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing,numerical modeling and microstructural analyses.Hot deformation tests are performed at temperatures of 250℃ to 400℃ under strain rates of 0.01 to 1.0 s^(−1).Transmission electron microscopy is used to reveal the presence of dynamic recrystallization(DRX),dynamic recovery(DRY),cracks and shear bands.To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy,the authors use Johnson–Cook damage model in a 3D finite element simulation.The optimal hot workability of magnesium alloy is found at a temperature(T)of 400℃ and strain rate(ε)of 0.01 s^(−1).Stability is found at a lower strain rate,and instability is found at a higher strain rate.
文摘AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the standard pin-on-disc wear test equipment. The tests were conducted under a normal load of 10 N at different sliding speeds ranging from 0.60 to 1.2 m/s for distance up to 2000 m. The wear mechanisms of the worn out surface were studied using SEM analysis. The influence of test parameters on wear rate of the pins was established using a linear regression model statistically. Compared with the AZ31B magnesium alloy, the nano-composite shows lower wear rates due to higher hardness improvement caused by the reinforcement. The wear mechanism appears to be a mix-up of ploughing, rows of furrows, delamination and oxidation.
基金This work was supported by Science&Engineering Research Board(DST-SERB)(ECR/2015/000301)in India.
文摘In this article,we study the approximate controllability results for an integroquasilinear evolution equation with random impulsive moments under sufficient conditions.The results are obtained by the theory of C0 semigroup of bounded linear operators on evolution equations and using trajectory reachable sets.Finally,we generalize the results too with and without fixed type impulsive moments.