Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
In this paper,an uncertainty propagation analysis method is developed based on an extended sparse grid technique and maximum entropy principle,aiming at improving the solving accuracy of the high-order moments and hen...In this paper,an uncertainty propagation analysis method is developed based on an extended sparse grid technique and maximum entropy principle,aiming at improving the solving accuracy of the high-order moments and hence the fitting accuracy of the probability density function(PDF)of the system response.The proposed method incorporates the extended Gauss integration into the uncertainty propagation analysis.Moreover,assisted by the Rosenblatt transformation,the various types of extended integration points are transformed into the extended Gauss-Hermite integration points,which makes the method suitable for any type of continuous distribution.Subsequently,within the sparse grid numerical integration framework,the statistical moments of the system response are obtained based on the transformed points.Furthermore,based on the maximum entropy principle,the obtained first four-order statistical moments are used to fit the PDF of the system response.Finally,three numerical examples are investigated to demonstrate the effectiveness of the proposed method,which includes two mathematical problems with explicit expressions and an engineering application with a black-box model.展开更多
A new near-infrared direct acceleration mechanism driven by Laguerre-Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum.Three-dimen...A new near-infrared direct acceleration mechanism driven by Laguerre-Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum.Three-dimensional simulations show that a 2-μm circularly polarized LG_(p)^(l)(p=0,l=1,σ_(2)=-1)laser can directly manipulate attosecond electron slices in additional dimensions(angular directions)and give them annular structures and angular momentums.These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators,edge-enhancement electron imaging,structured X-ray generation,and analysis and manipulation of nanomaterials.展开更多
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金the National Science Fund for Distinguished Young Scholars(Grant No.51725502)the major program of the National Natural Science Foundation of China(Grant No.51490662)the National Key Research and Development Project of China(Grant No.2016YFD0701105).
文摘In this paper,an uncertainty propagation analysis method is developed based on an extended sparse grid technique and maximum entropy principle,aiming at improving the solving accuracy of the high-order moments and hence the fitting accuracy of the probability density function(PDF)of the system response.The proposed method incorporates the extended Gauss integration into the uncertainty propagation analysis.Moreover,assisted by the Rosenblatt transformation,the various types of extended integration points are transformed into the extended Gauss-Hermite integration points,which makes the method suitable for any type of continuous distribution.Subsequently,within the sparse grid numerical integration framework,the statistical moments of the system response are obtained based on the transformed points.Furthermore,based on the maximum entropy principle,the obtained first four-order statistical moments are used to fit the PDF of the system response.Finally,three numerical examples are investigated to demonstrate the effectiveness of the proposed method,which includes two mathematical problems with explicit expressions and an engineering application with a black-box model.
基金supported by the National Natural Science Foundation of China(grant number 12075306)Strategic Priority Research Program of the Chinese Academy of Sciences(grant number XDB16010600)+4 种基金Key Research Programs in Frontier Science(grant number ZDBSLY-SLH006)Shanghai special science and technology innovation supported project(grant number 2019-jmrh1-kj1)Advanced research using high-intensity laser-produced photons and particles(ADONISgrant number CZ.02.1.01/0.0/0.0/16019/0000789)and High Field Initiative(HiFI,grant number CZ.02.1.01/0.0/0.0/15003/0000449)financial support of the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability Ⅱ。
文摘A new near-infrared direct acceleration mechanism driven by Laguerre-Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum.Three-dimensional simulations show that a 2-μm circularly polarized LG_(p)^(l)(p=0,l=1,σ_(2)=-1)laser can directly manipulate attosecond electron slices in additional dimensions(angular directions)and give them annular structures and angular momentums.These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators,edge-enhancement electron imaging,structured X-ray generation,and analysis and manipulation of nanomaterials.