期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of Lattice Boltzmann Flux Solver for Simulation of Incompressible Flows 被引量:7
1
作者 C.Shu Y.Wang +1 位作者 c.j.teo J.Wu 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第4期436-460,共25页
A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navie... A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navier-Stokes(N-S)equations and lattice Boltzmann equation(LBE).The macroscopic differential equations are discretized by the finite volume method,where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers.The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh,tie-up of mesh spacing and time interval,limitation to viscous flows.LBFS is validated by its application to simulate the viscous decaying vortex flow,the driven cavity flow,the viscous flow past a circular cylinder,and the inviscid flow past a circular cylinder.The obtained numerical results compare very well with available data in the literature,which show that LBFS has the second order of accuracy in space,and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary. 展开更多
关键词 Chapman-Enskog analysis flux solver incompressible flow Navier-Stokes equation lattice Boltzmann equation
在线阅读 下载PDF
A three-dimensional gas-kinetic flux solver for simulation of viscous flows with explicit formulations of conservative variables and numerical flux 被引量:2
2
作者 Y.Sun L.M.Yang +1 位作者 C.Shu c.j.teo 《Advances in Aerodynamics》 2020年第1期250-277,共28页
A truly three-dimensional(3D)gas-kinetic flux solver for simulation of incompressible and compressible viscous flows is presented in this work.By local reconstruction of continuous Boltzmann equation,the inviscid and ... A truly three-dimensional(3D)gas-kinetic flux solver for simulation of incompressible and compressible viscous flows is presented in this work.By local reconstruction of continuous Boltzmann equation,the inviscid and viscous fluxes across the cell interface are evaluated simultaneously in the solver.Different from conventional gaskinetic scheme,in the present work,the distribution function at cell interface is computed in a straightforward way.As an extension of our previous work(Sun et al.,Journal of Computational Physics,300(2015)492–519),the non-equilibrium distribution function is calculated by the difference of equilibrium distribution functions between the cell interface and its surrounding points.As a result,the distribution function at cell interface can be simply calculated and the formulations for computing the conservative flow variables and fluxes can be given explicitly.To validate the proposed flux solver,several incompressible and compressible viscous flows are simulated.Numerical results show that the current scheme can provide accurate numerical results for three-dimensional incompressible and compressible viscous flows. 展开更多
关键词 3D flux solver Gas-kinetic scheme Viscous flow Navier-Stokes equations 1 Introduction
原文传递
A Mesh Size Scaling Law with Reynolds Number for Large Eddy Simulation in Channel Flow
3
作者 Jie Yao c.j.teo 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第6期1535-1566,共32页
In this paper,a scaling law relating the mesh size to the Reynolds number was proposed to ensure consistent results for large eddy simulation(LES)as the Reynolds number was varied.The grid size scaling law was develop... In this paper,a scaling law relating the mesh size to the Reynolds number was proposed to ensure consistent results for large eddy simulation(LES)as the Reynolds number was varied.The grid size scaling law was developed by analyzing the lengthscale of the turbulent motion by using DNS data from the literature.The wall-resolving LES was then applied to a plane channel flow to validate the scaling law.The scaling law was tested at different Reynolds numbers(Ret=395,590 and 1000),and showed good results compared to direct numerical simulation(DNS)in terms of mean flow and various turbulent statistics.The velocity spectra analysis shows the evidence of the Kolmogorov–5/3 inertial subrange and verifies that the current LES can resolve the bulk of the turbulent kinetic energy by satisfying the grid scaling law.Meanwhile,the near-wall turbulent flow structures can also be well captured.Reasonably accurate predictions can thus be obtained for flows at even higher Reynolds numbers with significantly lower computational costs compared to DNS by applying the mesh scaling law. 展开更多
关键词 Large eddy simulation(LES) channel flow turbulent flow mesh size scaling law.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部