期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhancing comigration-ability of Mg_(2)Sn particles with Mg matrix via interphase segregation of Zn
1
作者 R.Wang C.F.Fang +5 位作者 J.Chen A.Liu c.j.li S.B.Mi M.Yao Y.M.Wang 《Journal of Magnesium and Alloys》 2025年第6期2769-2783,共15页
This study investigates the impact of Zn alloying on the dispersion of the reinforcing particle in Mg_(2)Sn/Mg composites.In the composite,Zn manifests in three distinct forms:Zn segregation layer between Mg–Mg_(2)Sn... This study investigates the impact of Zn alloying on the dispersion of the reinforcing particle in Mg_(2)Sn/Mg composites.In the composite,Zn manifests in three distinct forms:Zn segregation layer between Mg–Mg_(2)Sn,the solid solution and the MgZn_(2)phase.First-principles calculations confirm that the formation of Zn segregation layer decreases the interfacial energy of the Mg–Mg_(2)Sn.Importantly,this segregation layer significantly enhances the comigration capability of Mg_(2)Sn particles with Mg matrix during sintering flow,effectively hindering the agglomeration and coarsening of the nano-sized reinforcing phase.The dense and uniformly distributed nano-sized Mg_(2)Sn significantly increases the activity of non-basal slip,ensuring good elongation of the composite while enhancing strength.It can be concluded that enhancing the comigration-ability of reinforcing particles with the matrix is an effective strategy for achieving controlled dispersion of high-volume reinforcing particles and an excellent combination of strength and ductility in magnesium matrix composites. 展开更多
关键词 Magnesium matrix composites Zn segregation layer Comigration-ability First-principles calculations Reinforcing phase distribution
在线阅读 下载PDF
Breaking Mg matrix composite property trade-offs via in-situ interface reaction and heterogeneous structure design
2
作者 Z.Y.Xu Y.Q.You +6 位作者 Q.Lu c.j.li M.Song J.Tan L.Liu X.F.Chen J.H.Yi 《Journal of Magnesium and Alloys》 2025年第12期6121-6135,共15页
Many properties of Mg matrix composites are mutually incompatible,and even completely repel each other.Here,we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide(RGO... Many properties of Mg matrix composites are mutually incompatible,and even completely repel each other.Here,we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide(RGO)through an in-situ interface reaction strategy,achieving simultaneous improvement in the strength,ductility,and electromagnetic shielding performance of the composite.The magnetic component is generated by the in-situ reaction of Fe_(2)O_(3)nanoparticles encapsulated on RGO with the Mg matrix.The superior strength-ductility synergy originates from layered heterostructure,which actives non-basal dislocations and enables a stable microcrackmultiplication.The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave(EMW)inside the composite.The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites,which improves the interfacial polarization loss ability of the composites.The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit,thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields.The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite.The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites,and presents a promising approach for the development of structure/functional integrated composites with enhanced properties. 展开更多
关键词 Magnesium matrix composites strength-ductility synergy EMI shielding Non-basal slip Heterogeneous layered structure
在线阅读 下载PDF
Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy 被引量:6
3
作者 Y.Xing c.j.li +7 位作者 Y.K.Mu Y.D.Jia K.K.Song J.Tan G.Wang Z.Q.Zhang J.H.Yi J.Eckert 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期119-131,共13页
Multiphase CrMnFeCoNi high-entropy alloys(HEAs)were prepared by a powder metallurgy process com-bining mechanical alloying(MA)and vacuum hot-pressing sintering(HPS).The single-phase face-centered cubic(FCC)HEA powder ... Multiphase CrMnFeCoNi high-entropy alloys(HEAs)were prepared by a powder metallurgy process com-bining mechanical alloying(MA)and vacuum hot-pressing sintering(HPS).The single-phase face-centered cubic(FCC)HEA powder prepared by MA was sintered into a bulk HEA specimen containing FCC phase matrix along with precipitated M 23 C 6 phase and nanoscaleσphase particles.When the sintering temper-ature was 1223 K,the ultimate strength reaches 1300±11.6 MPa,and the elongation exceeds 4%±0.6%.Microstructural characterization reveals that the formation of nanoscale particles and deformation twins play critical roles in improving the strain hardening(SH)ability.Prolonging the MA time promoted the formation of the precipitated phase and enhanced the SH ability by increasing the number of precip-itated particles.The SH capacity increases significantly with increasing sintering temperature,which is attributed to a significant enhancement in the twinning capacity due to grain growth and the reduced number ofσphase particles.Through systematic studies,the planar glide of dislocations was found to be the main mode of deformation,while deformation twinning appeared as an auxiliary deformation mode when the twinning stress was reached.Although the formation of precipitates leads to grain bound-ary and precipitation strengthening effects,crack initiation is more prominent owing to increased grain boundary brittleness around the precipitated M 23 C 6 phase.The prominence of crack initiation is a contra-diction that must be reconciled with regard to precipitation strengthening.This work serves as a useful reference for the preparation of high-strength HEA parts by powder metallurgy. 展开更多
关键词 High entropy alloy Powder processing Grain refinement Precipitation strengthening Deformation twinning
原文传递
GO/MgO/Mg interface mediated strengthening and electromagnetic interference shielding in AZ31 composite 被引量:4
4
作者 Z.Y.Xu C.F.Fang +4 位作者 c.j.li R.Wang X.P.Zhang J.Tan Y.M.Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3800-3814,共15页
More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) d... More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) decorated with SnO_(2) coating is introduced as reinforcement into AZ31 Mg alloy. During the smelting process, the MgO layer is in situ gernerated at interface between GO and the molten Mg alloy matrix by consuming SnO_(2). In the solid state, such kind of interface structure can improve the GO-Mg interface bonding intensity,also significantly generate stacking faults. The AZ31 composite reinfoced by trace modified GO(0.1 wt%) exhibits high ultimate strength and almost the same elongation with AZ31 alloy. Compared with AZ31 alloy, the yield strength and ultimate tensile strength of composite are increased by 33.5% and 23.7%, respectively. Meanwhile, the multi-level electromagnetic reflection from the multi-layer structure of GO and the interface polarization caused by the MgO mid-layer can significantly improve EMI shielding performance. The appropriate interface design strategy achieves the effect of “two birds with one stone”. 展开更多
关键词 Metal-matrix composites Mechanical properties EMI shielding MICROSTRUCTURES
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部