期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
埃滕德卡-巴拉那地区硅质火山岩的氧同位素地球化学:源区的控制条件
1
作者 c.harris 申志军 《地质地球化学》 CSCD 北大核心 1994年第3期49-52,共4页
埃滕德卡(纳米比亚)和巴拉那(南美洲)白垩纪溢流玄武岩区硅质大山岩中辉石斑晶的氧同位素比值,被认为可反映原始岩浆的δ18O值。据我们识别,这两个地区的南部岩石为高δ18O型(δ18O辉石~+10‰),北部岩石为低δ18O型(δ18O... 埃滕德卡(纳米比亚)和巴拉那(南美洲)白垩纪溢流玄武岩区硅质大山岩中辉石斑晶的氧同位素比值,被认为可反映原始岩浆的δ18O值。据我们识别,这两个地区的南部岩石为高δ18O型(δ18O辉石~+10‰),北部岩石为低δ18O型(δ18O辉石~+6.5‰)。这两个流纹岩类型的其它差别,包括低δ18O型岩石中不相容元素的含量高、初始87Sr/86Sr比位低。我们认为,流纹岩类型的区域分布反映了源区组分的差异,只要这些源区是下地壳的、新元古代活动带的物质(高δ18O)和太古宙下地壳的物质(低δ18O),它们的组分差异就可得到圆满的解释。 展开更多
关键词 硅质火山岩 氧同位素 地球化学
在线阅读 下载PDF
Measurement of the integrated luminosity of data samples collected during 2019-2022 by the Belle Ⅱ experiment
2
作者 I.Adachi L.Aggarwal +407 位作者 H.Ahmed J.K.Ahn H.Aihara N.Akopov A.Aloisio N.Althubiti N.Anh Ky D.M.Asner H.Atmacan T.Aushev V.Aushev M.Aversano R.Ayad V.Babu H.Bae S.Bahinipati P.Bambade Sw.Banerjee M.Barrett J.Baudot A.Baur A.Beaubien F.Becherer J.Becker J.V.Bennett F.U.Bernlochner V.Bertacchi M.Bertemes E.Bertholet M.Bessner S.Bettarini B.Bhuyan F.Bianchi L.Bierwirth T.Bilka D.Biswas A.Bobrov D.Bodrov J.Borah A.Boschetti A.Bozek P.Branchini T.E.Browder A.Budano S.Bussino Q.Campagna M.Campajola L.Cao G.Casarosa C.Cecchi J.Cerasoli M.-C.Chang P.Chang R.Cheaib P.Cheema B.G.Cheon K.Chilikin K.Chirapatpimol H.-E.Cho K.Cho S.-J.Cho S.-K.Choi S.Choudhury J.Cochran L.Corona J.X.Cui S.Das E.De La Cruz-Burelo S.A.De La Motte G.de Marino G.De Nardo G.De Pietro R.de Sangro M.Destefanis S.Dey R.Dhamija A.Di Canto F.Di Capua J.Dingfelder Z.Doležal I.Domínguez Jiménez T.V.Dong K.Dort D.Dossett S.Dubey K.Dugic G.Dujany P.Ecker D.Epifanov J.Eppelt P.Feichtinger T.Ferber T.Fillinger C.Finck G.Finocchiaro A.Fodor F.Forti A.Frey B.G.Fulsom A.Gabrielli E.Ganiev M.Garcia-Hernandez R.Garg G.Gaudino V.Gaur A.Gaz A.Gellrich G.Ghevondyan D.Ghosh H.Ghumaryan G.Giakoustidis R.Giordano A.Giri P.Gironella B.Gobbo R.Godang O.Gogota P.Goldenzweig W.Gradl E.Graziani D.Greenwald Z.Gruberová T.Gu K.Gudkova I.Haide S.Halder Y.Han K.Hara T.Hara c.harris K.Hayasaka H.Hayashii S.Hazra C.Hearty M.T.Hedges A.Heidelbach I.Heredia de la Cruz M.Hernández Villanueva T.Higuchi M.Hoek M.Hohmann R.Hoppe P.Horak C.-L.Hsu T.Humair T.Iijima K.Inami N.Ipsita A.Ishikawa R.Itoh M.Iwasaki W.W.Jacobs D.E.Jaffe E.-J.Jang Q.P.Ji S.Jia Y.Jin A.Johnson K.K.Joo H.Junkerkalefeld M.Kaleta D.Kalita J.Kandra K.H.Kang G.Karyan T.Kawasaki F.Keil C.Kiesling C.-H.Kim D.Y.Kim J.-Y.Kim K.-H.Kim Y.-K.Kim Y.J.Kim H.Kindo K.Kinoshita P.Kodyš T.Koga S.Kohani K.Kojima A.Korobov S.Korpar E.Kovalenko R.Kowalewski P.Križan P.Krokovny T.Kuhr R.Kumar K.Kumara A.Kuzmin Y.-J.Kwon S.Lacaprara Y.-T.Lai K.Lalwani T.Lam L.Lanceri J.S.Lange M.Laurenza K.Lautenbach R.Leboucher M.J.Lee C.Lemettais P.Leo D.Levit P.M.Lewis C.Li L.K.Li S.X.Li W.Z.Li Y.Li Y.B.Li Y.P.Liao J.Libby J.Lin M.H.Liu Q.Y.Liu Z.Q.Liu D.Liventsev S.Longo T.Lueck C.Lyu Y.Ma M.Maggiora S.P.Maharana R.Maiti S.Maity G.Mancinelli R.Manfredi E.Manoni M.Mantovano D.Marcantonio S.Marcello C.Marinas C.Martellini A.Martens A.Martini T.Martinov L.Massaccesi M.Masuda K.Matsuoka D.Matvienko S.K.Maurya J.A.McKenna R.Mehta F.Meier M.Merola C.Miller M.Mirra S.Mitra K.Miyabayashi G.B.Mohanty S.Mondal S.Moneta H.-G.Moser R.Mussa I.Nakamura M.Nakao Y.Nakazawa M.Naruki D.Narwal Z.Natkaniec A.Natochii M.Nayak G.Nazaryan M.Neu C.Niebuhr S.Nishida S.Ogawa Y.Onishchuk H.Ono P.Pakhlov G.Pakhlova E.Paoloni S.Pardi K.Parham H.Park J.Park K.Park S.-H.Park B.Paschen A.Passeri S.Patra T.K.Pedlar R.Peschke R.Pestotnik L.E.Piilonen G.Pinna Angioni P.L.M.Podesta-Lerma T.Podobnik S.Pokharel C.Praz S.Prell E.Prencipe M.T.Prim H.Purwar P.Rados G.Raeuber S.Raiz N.Rauls M.Reif S.Reiter M.Remnev L.Reuter I.Ripp-Baudot G.Rizzo S.H.Robertson M.Roehrken J.M.Roney A.Rostomyan N.Rout S.Sandilya L.Santelj Y.Sato V.Savinov B.Scavino M.Schnepf C.Schwanda A.J.Schwartz Y.Seino A.Selce K.Senyo J.Serrano C.Sfienti W.Shan C.Sharma C.P.Shen X.D.Shi T.Shillington T.Shimasaki J.-G.Shiu D.Shtol B.Shwartz A.Sibidanov F.Simon J.B.Singh J.Skorupa R.J.Sobie M.Sobotzik A.Soffer A.Sokolov E.Solovieva W.Song S.Spataro B.Spruck M.Starič P.Stavroulakis S.Stefkova R.Stroili Y.Sue M.Sumihama K.Sumisawa W.Sutcliffe N.Suwonjandee H.Svidras M.Takahashi M.Takizawa U.Tamponi K.Tanida F.Tenchini A.Thaller O.Tittel R.Tiwary E.Torassa K.Trabelsi I.Ueda K.Unger Y.Unno K.Uno S.Uno P.Urquijo Y.Ushiroda S.E.Vahsen R.van Tonder K.E.Varvell M.Veronesi A.Vinokurova V.S.Vismaya L.Vitale V.Vobbilisetti R.Volpe A.Vossen M.Wakai S.Wallner E.Wang M.-Z.Wang Z.Wang A.Warburton S.Watanuki C.Wessel E.Won X.P.Xu B.D.Yabsley S.Yamada W.Yan S.B.Yang J.Yelton J.H.Yin K.Yoshihara C.Z.Yuan L.Zani B.Zhang V.Zhilich J.S.Zhou Q.D.Zhou X.Y.Zhou V.I.Zhukova R.Zlebcík The Belle Ⅱ Collaboration 《Chinese Physics C》 2025年第1期7-18,共12页
series of data samples was collected with the Belle Ⅱ detector at the SuperKEKB collider from March 2019 to June 2022.We determine the integrated luminosities of these data samples using three distinct methodologies ... series of data samples was collected with the Belle Ⅱ detector at the SuperKEKB collider from March 2019 to June 2022.We determine the integrated luminosities of these data samples using three distinct methodologies involving Bhabha(e^(+)e^(-)→e^(+)e^(-)(ny),digamma(e^(+)e^(-)→γγ(nγ),and dimuon(e^(+)e^(-)→μ^(+)μ^(-)(nγ)events.The total integrated luminosity obtained with Bhabha,digamma,and dimuon events is(426.88±0.03±2.61)fb^(-1),(429.28±0.03±2.62)fb^(-1),and(423.99±0.04±3.83)fb^(-1),where the first uncertainties are statistical and the second are systematic.The resulting total integrated luminosity obtained from the combination of the three methods is(427.87±2.01)fb^(-1). 展开更多
关键词 integrated luminosity Bhabha digamma dimuon BelleⅡ
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部