期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Zr-Ti-Cu-Ni-Be-Fe大块非晶合金晶化动力学效应 被引量:21
1
作者 赵德乾 c.h.shek 汪卫华 《金属学报》 SCIE EI CAS CSCD 北大核心 2001年第7期754-758,共5页
利用非等温差示扫描量热(DSC)分析方法研究了大块 Zr41Ti14Cu12.5Ni2Be22.5Fe8非晶合金中的晶化行为,用 Kissinger方程计算其晶化表观激活能.实验表明,在 Zr基大块非晶合金中掺入 Fe后... 利用非等温差示扫描量热(DSC)分析方法研究了大块 Zr41Ti14Cu12.5Ni2Be22.5Fe8非晶合金中的晶化行为,用 Kissinger方程计算其晶化表观激活能.实验表明,在 Zr基大块非晶合金中掺入 Fe后,其玻璃转变与晶化行为都与加热速率有关,均具有动力学效应.同时,从晶化反应速率常数的角度讨论了非晶形成能力. 展开更多
关键词 大块非晶合金 晶化 动力学效应
在线阅读 下载PDF
Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability 被引量:7
2
作者 Xin Li Guangcun Shan c.h.shek 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期113-120,共8页
Fe-based metallic glasses(MGs)have shown great commercial values due to their excellent soft magnetic properties.Magnetism prediction with consideration of glass forming ability(GFA)is of great signifi-cance for devel... Fe-based metallic glasses(MGs)have shown great commercial values due to their excellent soft magnetic properties.Magnetism prediction with consideration of glass forming ability(GFA)is of great signifi-cance for developing novel functional Fe-based MGs.However,theories or models established based on condensed matter physics exhibit limited accuracy and some exceptions.In this work,based on 618 Fe-based MGs samples collected from published works,machine learning(ML)models were well trained to predict saturated magnetization(B_(s))of Fe-based MGs.GFA was treated as a feature using the experimental data of the supercooled liquid region(△T_(x)).Three ML algorithms,namely eXtreme gradient boosting(XGBoost),artificial neural networks(ANN)and random forest(RF),were studied.Through feature selection and hyperparameter tuning,XGBoost showed the best predictive performance on the randomly split test dataset with determination coefficient(R^(2))of 0.942,mean absolute percent error(MAPE)of 5.563%,and root mean squared error(RMSE)of 0.078 T.A variety of feature importance rankings derived by XGBoost models showed that T_(x) played an important role in the predictive performance of the models.This work showed the proposed ML method can simultaneously aggregate GFA and other features in ther-modynamics,kinetics and structures to predict the magnetic properties of Fe-based MGs with excellent accuracy. 展开更多
关键词 Metallic glasses Soft magnetic properties Glass forming ability Machine learning Non-linear regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部