期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc)alloys 被引量:10
1
作者 S.B.Wang c.f.pan +3 位作者 B.Wei X.Zheng Y.X.Lai J.H.Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第15期216-226,共11页
Sc-addition can significantly enhance the performance of the micro-alloyed Al-Mg-Si-Sc alloys.However,the mechanisms by which the Sc element modifies the microstructure of the alloys are still unknown in many cases.He... Sc-addition can significantly enhance the performance of the micro-alloyed Al-Mg-Si-Sc alloys.However,the mechanisms by which the Sc element modifies the microstructure of the alloys are still unknown in many cases.Here,using atomic-scale transmission electron microscopy and atomic-resolution spectroscopy,we have revealed the microstructural differences between two age-hardened Al-0.5Mg-0.4Si(wt.%)alloys with and without Sc-addition.The first significant effect of Sc-addition on the precipitation microstructure of the Al-Mg-Si-Sc alloy is that Sc-atoms may distribute at theβ"-precipitate/Al-matrix interface and therefore accelerate aging kinetics at the initial stage of hardening.The second significant effect of Sc-addition is that in the transition from theβ"-hardened peak-age stage to theβ′-hardened late stage,Sc-atoms can greatly improve the stability of transitionalβ"/B'/β′composite precipitates by entering the B'-substructures and/or locating at the precipitate/Al interfaces.As such Sc-atoms effectively suppressβ"toβ'transformation and cross-sectional coarsening of bothβ"and composite precipitates,leading to much finer precipitate needles with smaller diameter but much larger length,as compared with those precipitate needles formed in the alloy without Sc-addition.Hence,the alloy with Sc-addition exhibits a much better thermal stability than that without Sc. 展开更多
关键词 Al alloy Strengthening mechanism Phase transition Transmission electron microscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部