A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in ...A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.展开更多
The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology forma...The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.展开更多
Unfavorable hydrodynamic evolution is considered as the major cause leading to reservoir slope instability and is often modeled by numerical method. However, this simulation is seldom checked by systematic field instr...Unfavorable hydrodynamic evolution is considered as the major cause leading to reservoir slope instability and is often modeled by numerical method. However, this simulation is seldom checked by systematic field instrumentation. Taking the opportunity of filling the Three Gorges Reservoir, a system was established in Xietan landslide to monitor reservoir water level, subground water level, seepage pressure, rainfall and deformation, etc. The monitored data during reservoir filling shows that: (1) The water level rise in the bank lags behind the reservoir filling and the lag time depends on the bank permeability; (2) rainfall-induced subground water rise and its lag time is closely correlated to hourly rainfall, indicating that it is not feasible or sufficient to use daily rainfall for analysis; (3) the effect of inverse seepage during reservoir filling on stability is ephemeral and reservoir filling is the major cause leading to bank instability.展开更多
基金This work is financially supported by the Research Grant Council of HKSAR Government and Hong Kong Jockey Club CharitiesTrust.
文摘A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.
基金the Research Grant Council of HKSAP Government and Hong Kong Jockey Club Charities Trust(No.HKU7005/01E).
文摘The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.
基金This work was supported by the Natonal Natural Science Foundation of China(Grant No.50279051)the Special Fund for Major State Basic Research Project(Grant No.2002CB412702)the Research Grant Council of Hong Kong.
文摘Unfavorable hydrodynamic evolution is considered as the major cause leading to reservoir slope instability and is often modeled by numerical method. However, this simulation is seldom checked by systematic field instrumentation. Taking the opportunity of filling the Three Gorges Reservoir, a system was established in Xietan landslide to monitor reservoir water level, subground water level, seepage pressure, rainfall and deformation, etc. The monitored data during reservoir filling shows that: (1) The water level rise in the bank lags behind the reservoir filling and the lag time depends on the bank permeability; (2) rainfall-induced subground water rise and its lag time is closely correlated to hourly rainfall, indicating that it is not feasible or sufficient to use daily rainfall for analysis; (3) the effect of inverse seepage during reservoir filling on stability is ephemeral and reservoir filling is the major cause leading to bank instability.