Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances.However,tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target i...Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances.However,tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance We describe several near-infrared,visible,ultraviolet and soft and hard X-ray diagnostics employed in a~10^(22)W/cm^(2)laser±plasma experiment.We used nearly 10 J total energy femtosecond laser pulses focused into an approximately1.3-μm focal spot on 5±20μm thick stainless-steel targets.We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5μm accuracy(i.e.,around half of the short Rayleigh length)and show that several diagnostics(in particular,3ωreflection and on-axis hard X-rays)can ensure this accuracy.We demonstrated target positioning within several micrometers from the focus,ensuring over 80%of the ideal peak laser intensity on-target.Our approach is relatively fast(it requires 10±20 laser shots)and does not rely on the coincidence of low-power and high-power focal planes.展开更多
Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications r...Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications requiring bright pulses of energetic ions. Characterizing the spectro-spatial profile of these ions at high repetition rates in the harsh radiation environments created by laser–plasma interactions remains challenging but is paramount for further source development.To address this, we present a compact scintillating fiber imaging spectrometer based on the tomographic reconstruction of proton energy deposition in a layered fiber array. Modeling indicates that spatial resolution of approximately 1 mm and energy resolution of less than 10% at proton energies of more than 20 MeV are readily achievable with existing 100 μm diameter fibers. Measurements with a prototype beam-profile monitor using 500 μm fibers demonstrate active readouts with invulnerability to electromagnetic pulses, and less than 100 Gy sensitivity. The performance of the full instrument concept is explored with Monte Carlo simulations, accurately reconstructing a proton beam with a multiple-component spectro-spatial profile.展开更多
Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-...Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-ray radiography.By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced,enabling imaging with enhanced resolution and contrast.Using constrained targets we demonstrate experimentally a(20±3)μm X-ray source,improving the image quality compared to unconstrained foil targets.Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target,driving a brighter source of X-rays.展开更多
After a population of laser-driven hot electrons traverses a limited thickness solid target,these electrons will encounter the rear surface,creating TV/m fields that heavily influence the subsequent hot-electron propa...After a population of laser-driven hot electrons traverses a limited thickness solid target,these electrons will encounter the rear surface,creating TV/m fields that heavily influence the subsequent hot-electron propagation.Electrons that fail to overcome the electrostatic potential reflux back into the target.Those electrons that do overcome the field will escape the target.Here,using the particle-in-cell(PIC)code EPOCH and particle tracking of a large population of macro-particles,we investigate the refluxing and escaping electron populations,as well as the magnitude,spatial and temporal evolution of the rear surface electrostatic fields.The temperature of both the escaping and refluxing electrons is reduced by 30%–50%when compared to the initial hot-electron temperature as a function of intensity between 1019 and 1021 W/cm^2.Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy,below which only a small fraction are able to escape the target.We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface.展开更多
基金financial support from ELI-Beamlinesproject Advanced Research using High Intensity Laser Produced Photons and Particles(ADONIS)(Project No.CZ.02.1.01/0.0/0.0/16_019/0000789)from the European Regional Development Fund+5 种基金QST-IRIthe QST President’s Strategic Grant(Creative Research)JSPS KAKENHI JP17F17811,JP19KK0355,JP19H00669 and JP22H01239the Czech Ministry of EducationYouth and Sports(CMEYS)for the financial support of the project number LM2023068partly supported by JSPS KAKENHI Grant No.JP23H01151。
文摘Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances.However,tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance We describe several near-infrared,visible,ultraviolet and soft and hard X-ray diagnostics employed in a~10^(22)W/cm^(2)laser±plasma experiment.We used nearly 10 J total energy femtosecond laser pulses focused into an approximately1.3-μm focal spot on 5±20μm thick stainless-steel targets.We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5μm accuracy(i.e.,around half of the short Rayleigh length)and show that several diagnostics(in particular,3ωreflection and on-axis hard X-rays)can ensure this accuracy.We demonstrated target positioning within several micrometers from the focus,ensuring over 80%of the ideal peak laser intensity on-target.Our approach is relatively fast(it requires 10±20 laser shots)and does not rely on the coincidence of low-power and high-power focal planes.
基金financially supported by STFC,Dstl and EPSRC(grant numbers EP/R006202/1,EP/V049232/1 and EP/P020607/1)by Laserlab-Europe(grant agreement number 871124,European Union’s Horizon 2020 research and innovation program).
文摘Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications requiring bright pulses of energetic ions. Characterizing the spectro-spatial profile of these ions at high repetition rates in the harsh radiation environments created by laser–plasma interactions remains challenging but is paramount for further source development.To address this, we present a compact scintillating fiber imaging spectrometer based on the tomographic reconstruction of proton energy deposition in a layered fiber array. Modeling indicates that spatial resolution of approximately 1 mm and energy resolution of less than 10% at proton energies of more than 20 MeV are readily achievable with existing 100 μm diameter fibers. Measurements with a prototype beam-profile monitor using 500 μm fibers demonstrate active readouts with invulnerability to electromagnetic pulses, and less than 100 Gy sensitivity. The performance of the full instrument concept is explored with Monte Carlo simulations, accurately reconstructing a proton beam with a multiple-component spectro-spatial profile.
基金supported by EPSRC grants EP/K022415/1and EP/R006202/1the STFC IPS grant ST/P000177/1
文摘Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-ray radiography.By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced,enabling imaging with enhanced resolution and contrast.Using constrained targets we demonstrate experimentally a(20±3)μm X-ray source,improving the image quality compared to unconstrained foil targets.Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target,driving a brighter source of X-rays.
基金funding from EPSRC Grant Nos. EP/J003832/1, EP/K022415/1, EP/R006202/1the use of the Scarf simulation cluster
文摘After a population of laser-driven hot electrons traverses a limited thickness solid target,these electrons will encounter the rear surface,creating TV/m fields that heavily influence the subsequent hot-electron propagation.Electrons that fail to overcome the electrostatic potential reflux back into the target.Those electrons that do overcome the field will escape the target.Here,using the particle-in-cell(PIC)code EPOCH and particle tracking of a large population of macro-particles,we investigate the refluxing and escaping electron populations,as well as the magnitude,spatial and temporal evolution of the rear surface electrostatic fields.The temperature of both the escaping and refluxing electrons is reduced by 30%–50%when compared to the initial hot-electron temperature as a function of intensity between 1019 and 1021 W/cm^2.Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy,below which only a small fraction are able to escape the target.We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface.