A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong ga...A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion.展开更多
This review provided some recent progress of the research on corrosion mechanisms of magnesium and its alloys and a basis for follow-on research. Galvanic corrosion, pitting corrosion, intergranular corrosion (IGC), f...This review provided some recent progress of the research on corrosion mechanisms of magnesium and its alloys and a basis for follow-on research. Galvanic corrosion, pitting corrosion, intergranular corrosion (IGC), filiform corrosion, crevice corrosion, stress corrosion cracking (SCC), and corrosion fatigue (CF) were discussed. The influence of metallurgical factors such as alloying elements, microstructure and secondary phases, processing factors such as heat treatment and weld, and environmental factors including temperature, relative humidity, solution pH values and concentration on corrosion were discussed. In particular, a mechanism of pitting corrosion caused by AlMn particles was proposed. The corrosion properties of AZ91D weld material were investigated.展开更多
The corrosion behavior of Mg-10Gd-xZn(x=2,6 wt.%)alloys in 0.5 wt.%NaCl solution was investigated.Microstructures of both the alloys consisted of(Mg,Zn)_(3) Gd phase and lamellar long period stacking ordered(LPSO)phas...The corrosion behavior of Mg-10Gd-xZn(x=2,6 wt.%)alloys in 0.5 wt.%NaCl solution was investigated.Microstructures of both the alloys consisted of(Mg,Zn)_(3) Gd phase and lamellar long period stacking ordered(LPSO)phase.The morphology of the second phase at the grain boundary differed in both alloys:it was a continuous network structure in Mg-10Gd-6Zn,whereas it was relatively discrete in Mg-10Gd-2Zn.The dendrites were finer in size and highly branched in Mg-10Gd-6Zn.The corrosion results indicated that the increase in Zn content increased the corrosion rate in Mg-10Gd-xZn alloys.Micro-galvanic corrosion occurred near the grain boundary in both alloys initially as the grain boundary phase was stable and acted as a cathode,however,filiform corrosion dominated in the later stage,which was facilitated by the LPSO phase in the matrix.Severe micro-galvanic corrosion occurred in Mg-10Gd-6Zn due to the higher volume of second phase.The stability of the second phase at the grain boundary was altered and dissolved after the long immersion times.Probably the NaCl solution chemically reacted with the grain boundary phase and de-stabilized it during the long immersion times,and was removed by the chromic acid used for the corrosion product removal.展开更多
The growth kinetics of PEO coatings on AZ31 and AZ91 magnesium alloys were studied and correlated with their structure,compositions(phase and elemental)and corrosion resistance.It was established that the coatings hav...The growth kinetics of PEO coatings on AZ31 and AZ91 magnesium alloys were studied and correlated with their structure,compositions(phase and elemental)and corrosion resistance.It was established that the coatings have a two-(outer and anodic)or three-layer structure(outer,inner and anodic)depending on the treatment time.Briefly,at short treatment time only an anodic layer and outer layer exists.Growth of the outer PEO layer takes place due to the micro discharges,which occur in vertical pores and voids with spherical cross-section.If the time is increasing,and electrolyte inside of the pores is heating-up,etching of the Mg substrate and oxide film becomes more dominant and horizontal pores in the interface between coating and metal are formed.In the pores new anodic layer will form and at this time the formation of the third inner layer starts.The growth of the inner layer happens via the anodic film as a result of micro discharge ignition in the horizontal pores,accompanied by formation of plasma in numerous micro-voids of this layer.The coatings formed on AZ91 alloy are denser,than those on AZ31,which is related to the difference in the rates of inner layer growth and dissolving of oxides which are located at the bottom of the horizontal pores.Because of the lower Al content,the AZ31 substrate itself and the also the oxide films are less stable and tend to dissolve at a higher rate compared to AZ91.Thus,it was demonstrated that a good corrosion resistance of the coatings was only obtained on AZ91 and if the average thickness of the coating is around 50μm,correlating with the formation of a sufficiently dense inner laye-Knowing this mechanism,a new two-step treatment was suggested,combining the standard PEO treatment with a subsequent PEO process in an electrolyte supporting the inner film formation.The concept was successfully applied and a further improved corrosion resistance was obtained compared to the single stage PEO process.This improvement of corrosion resistance was related to the better sealing of porosity and formation of a denser inner layer.展开更多
An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler mater...An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.展开更多
PEO coatings were synthesized from phosphate-based (bP-PEO) and glycerol added phosphate-based (gP-PEO) electrolytes with differentprocessing times. For both bP-PEO and gP-PEO coatings treated with different processin...PEO coatings were synthesized from phosphate-based (bP-PEO) and glycerol added phosphate-based (gP-PEO) electrolytes with differentprocessing times. For both bP-PEO and gP-PEO coatings treated with different processing time its morphology, elemental and phase composition,and electrochemical behaviour has been comparatively investigated. For this, scanning electron microscope (SEM), energy-dispersiveX-ray spectroscopy (EDXS), X-ray diffraction, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniqueswere employed. The gP-PEO coatings were observed to have higher pore density with reduced pores size, surface porosity, and averagecoating thickness compared to bP-PEO for all the PEO processing time. XRD studies revealed that glycerol addition resulted in the fosteringof crystalline MgO (periclase) phase and promoting Mg3(PO4)2 (farringtonite) phase amorphization. In general, electrochemical behaviourshowed improved corrosion behaviour for gP-PEO compared to bP-PEO.展开更多
In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion lay...In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion layer of LDH nanocontainers were formed under ambient pressure conditions without carbonate addition in the electrolyte. The obtained LDH was characterized using experimental(SEM,XRD, TGA, XPS, Raman, etc.) and computational methods(thermodynamic calculation, modeling of possible LDH crystal structures). A comparison of three possible LDHs(LDH-OH,-NO_(3) and-CO_(3)) was performed. Based on the experimental results and crystal simulation approach, it was confirmed, that the mixed LDH-OH/CO_(3) is grown on the surface in the presence of DTPA pentasodium salt.展开更多
基金support from the Alexander von Humboldt Foundation.We thank DESY(Hamburg,Germany)for granting the proposal I20221296support at the PETRA III P05 end-station.
文摘A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion.
基金Project (CSTL, 2004BA4002 and 8655) supported by the Key Natural Science Foundation of Chongqing Municipal Science and Technology Committee, China Project (KJ050604) supported by the Science and Technology Program of Chongqing Municipal Education Committee, China
文摘This review provided some recent progress of the research on corrosion mechanisms of magnesium and its alloys and a basis for follow-on research. Galvanic corrosion, pitting corrosion, intergranular corrosion (IGC), filiform corrosion, crevice corrosion, stress corrosion cracking (SCC), and corrosion fatigue (CF) were discussed. The influence of metallurgical factors such as alloying elements, microstructure and secondary phases, processing factors such as heat treatment and weld, and environmental factors including temperature, relative humidity, solution pH values and concentration on corrosion were discussed. In particular, a mechanism of pitting corrosion caused by AlMn particles was proposed. The corrosion properties of AZ91D weld material were investigated.
文摘The corrosion behavior of Mg-10Gd-xZn(x=2,6 wt.%)alloys in 0.5 wt.%NaCl solution was investigated.Microstructures of both the alloys consisted of(Mg,Zn)_(3) Gd phase and lamellar long period stacking ordered(LPSO)phase.The morphology of the second phase at the grain boundary differed in both alloys:it was a continuous network structure in Mg-10Gd-6Zn,whereas it was relatively discrete in Mg-10Gd-2Zn.The dendrites were finer in size and highly branched in Mg-10Gd-6Zn.The corrosion results indicated that the increase in Zn content increased the corrosion rate in Mg-10Gd-xZn alloys.Micro-galvanic corrosion occurred near the grain boundary in both alloys initially as the grain boundary phase was stable and acted as a cathode,however,filiform corrosion dominated in the later stage,which was facilitated by the LPSO phase in the matrix.Severe micro-galvanic corrosion occurred in Mg-10Gd-6Zn due to the higher volume of second phase.The stability of the second phase at the grain boundary was altered and dissolved after the long immersion times.Probably the NaCl solution chemically reacted with the grain boundary phase and de-stabilized it during the long immersion times,and was removed by the chromic acid used for the corrosion product removal.
基金The authors would like to thank ACTICOAT project in frame of Era.NET-Rus+Call,2017(Project N477)RFBR(Project No.18-53-76008)in the frame of project ACTICOAT(Era.Net RUS Plus Call 2017,Project 477)for the partial financial support of this work.MS,MZ and CB additionally appreciate European project FUNCOAT("Development and design of novel multiFUNctional PEO COATings"in frame of H2020-MSCA-RISE-2018 call,Grant Agreement No 823942)for the financial assistance.
文摘The growth kinetics of PEO coatings on AZ31 and AZ91 magnesium alloys were studied and correlated with their structure,compositions(phase and elemental)and corrosion resistance.It was established that the coatings have a two-(outer and anodic)or three-layer structure(outer,inner and anodic)depending on the treatment time.Briefly,at short treatment time only an anodic layer and outer layer exists.Growth of the outer PEO layer takes place due to the micro discharges,which occur in vertical pores and voids with spherical cross-section.If the time is increasing,and electrolyte inside of the pores is heating-up,etching of the Mg substrate and oxide film becomes more dominant and horizontal pores in the interface between coating and metal are formed.In the pores new anodic layer will form and at this time the formation of the third inner layer starts.The growth of the inner layer happens via the anodic film as a result of micro discharge ignition in the horizontal pores,accompanied by formation of plasma in numerous micro-voids of this layer.The coatings formed on AZ91 alloy are denser,than those on AZ31,which is related to the difference in the rates of inner layer growth and dissolving of oxides which are located at the bottom of the horizontal pores.Because of the lower Al content,the AZ31 substrate itself and the also the oxide films are less stable and tend to dissolve at a higher rate compared to AZ91.Thus,it was demonstrated that a good corrosion resistance of the coatings was only obtained on AZ91 and if the average thickness of the coating is around 50μm,correlating with the formation of a sufficiently dense inner laye-Knowing this mechanism,a new two-step treatment was suggested,combining the standard PEO treatment with a subsequent PEO process in an electrolyte supporting the inner film formation.The concept was successfully applied and a further improved corrosion resistance was obtained compared to the single stage PEO process.This improvement of corrosion resistance was related to the better sealing of porosity and formation of a denser inner layer.
文摘An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.
文摘PEO coatings were synthesized from phosphate-based (bP-PEO) and glycerol added phosphate-based (gP-PEO) electrolytes with differentprocessing times. For both bP-PEO and gP-PEO coatings treated with different processing time its morphology, elemental and phase composition,and electrochemical behaviour has been comparatively investigated. For this, scanning electron microscope (SEM), energy-dispersiveX-ray spectroscopy (EDXS), X-ray diffraction, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniqueswere employed. The gP-PEO coatings were observed to have higher pore density with reduced pores size, surface porosity, and averagecoating thickness compared to bP-PEO for all the PEO processing time. XRD studies revealed that glycerol addition resulted in the fosteringof crystalline MgO (periclase) phase and promoting Mg3(PO4)2 (farringtonite) phase amorphization. In general, electrochemical behaviourshowed improved corrosion behaviour for gP-PEO compared to bP-PEO.
基金financial support of the I2B fund(Helmholtz Association)in frame of MUFfin project as well as ACTICOAT project in frame of Erafinancial support within the project CICECO-Aveiro Institute of Materials(UIDB/50011/2020&UIDP/50011/2020)financed by national funds through the FCT/MCTES and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement。
文摘In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion layer of LDH nanocontainers were formed under ambient pressure conditions without carbonate addition in the electrolyte. The obtained LDH was characterized using experimental(SEM,XRD, TGA, XPS, Raman, etc.) and computational methods(thermodynamic calculation, modeling of possible LDH crystal structures). A comparison of three possible LDHs(LDH-OH,-NO_(3) and-CO_(3)) was performed. Based on the experimental results and crystal simulation approach, it was confirmed, that the mixed LDH-OH/CO_(3) is grown on the surface in the presence of DTPA pentasodium salt.