Nanostructured diamond have potential applications in many biomedical related fields and demonstrated extraordinary capacity to influence cellular responses. Studying the surface property of nanodiamond and its influe...Nanostructured diamond have potential applications in many biomedical related fields and demonstrated extraordinary capacity to influence cellular responses. Studying the surface property of nanodiamond and its influence to protein adsorption and subsequent cellular responses along with the mechanism behind such capacity becomes more important. Here the role of surface energy associated with nanostructured diamond in modulating fibronectin and osteoblast(OB, bone forming cells) responses was investigated. Nanocrystalline diamond(NCD) and submicron crystalline diamond(SMCD) films with controllable surface energy were prepared by microwave-enhanced plasma chemical vapor deposition(MPCVD) techniques. Fibronectin adsorption on the diamond films with varied surface energy values was measured via the enzyme-linked immunosorbent assay(ELISA) and the relationship between the surface energy and fibronectin adsorption was studied. The result indicated that fibronectin adsorption on nanostructured surfaces was closely related to both surface energy and material microstructures. The spreading and migration of OB aggregates(each containing 30–50 cells) on the NCD with varied surface energy values were also studied. The result indicates a correlation between the cell spreading and migration on nanodiamond and the surface energy of nanostructured surface.展开更多
As global energy demand continues to rise and climate change accelerates,the need for sustainable and energy-efficient cooling solutions has reached a critical level.Conventional air conditioning systems heavily rely ...As global energy demand continues to rise and climate change accelerates,the need for sustainable and energy-efficient cooling solutions has reached a critical level.Conventional air conditioning systems heavily rely on energy-intensive mechanical cooling,which significantly contributes to both electricity demand and greenhouse gas emissions.Passive cooling strategies,particularly radiative cooling(RC)and evaporative cooling(EC),present an alternative approach by harnessing natural processes for temperature regulation.While standalone RC can be affected by weather conditions and EC relies on water availability,Radiative-coupled EC(REC)offers a versatile and sustainable cooling solution suitable for various applications.Here we summarize an overview of the theoretical foundations and mathematical models of REC,encompassing REC by bulk water(REC-BW),REC by perspiration(REC-P),and REC by sorbed water(REC-SW).Moreover,we explore a range of applications,spanning from industrial processes to personal thermal management,and examine the advantages and challenges associated with each REC approach.The significance of REC lies in its potential to revolutionize cooling technology,reduce energy consumption,and minimize the environmental impact.REC-BW can conserve water resources in industrial cooling processes,while REC-P offers innovative solutions for wearable electronics and textiles.REC-SW’s adaptability makes it suitable for food preservation and future potable cooling devices.By addressing the challenges posed by REC,including water consumption,textile design,and optimization of bilayer structures,we can unlock the transformative potential of REC and contribute to sustainable cooling technologies in a warming world.展开更多
Accurately predicting the variability of thermal runaway(TR)behavior in lithium-ion(Li-ion)batteries is critical for designing safe and reliable energy storage systems.Unfortunately,traditional calorimetry-based exper...Accurately predicting the variability of thermal runaway(TR)behavior in lithium-ion(Li-ion)batteries is critical for designing safe and reliable energy storage systems.Unfortunately,traditional calorimetry-based experiments to measure heat release during TR are time-consuming and expensive.Herein,we highlight an exciting transfer learning approach that leverages mass ejection data and metadata from cells to predict heat output variability during TR events.This approach significantly reduces the effort and time to assess thermal risks associated with Li-ion batteries.展开更多
基金the National Natural Science Foundation of China (Nos. 81622032 and 51672184)the Jiangsu Innovation and Entrepreneurship Program+1 种基金the Natural Science Research of Jiangsu Higher Education Institutions (No. 17KJA180011)the US Hermann Foundation and the National Science Foundation (award DMR-0805172) for financial supports
文摘Nanostructured diamond have potential applications in many biomedical related fields and demonstrated extraordinary capacity to influence cellular responses. Studying the surface property of nanodiamond and its influence to protein adsorption and subsequent cellular responses along with the mechanism behind such capacity becomes more important. Here the role of surface energy associated with nanostructured diamond in modulating fibronectin and osteoblast(OB, bone forming cells) responses was investigated. Nanocrystalline diamond(NCD) and submicron crystalline diamond(SMCD) films with controllable surface energy were prepared by microwave-enhanced plasma chemical vapor deposition(MPCVD) techniques. Fibronectin adsorption on the diamond films with varied surface energy values was measured via the enzyme-linked immunosorbent assay(ELISA) and the relationship between the surface energy and fibronectin adsorption was studied. The result indicated that fibronectin adsorption on nanostructured surfaces was closely related to both surface energy and material microstructures. The spreading and migration of OB aggregates(each containing 30–50 cells) on the NCD with varied surface energy values were also studied. The result indicates a correlation between the cell spreading and migration on nanodiamond and the surface energy of nanostructured surface.
基金the Natural Science Foundation of Hunan Province(No.2021JJ40732)the Central South University Innovation-Driven Research Program(No.2023CXQD012).
文摘As global energy demand continues to rise and climate change accelerates,the need for sustainable and energy-efficient cooling solutions has reached a critical level.Conventional air conditioning systems heavily rely on energy-intensive mechanical cooling,which significantly contributes to both electricity demand and greenhouse gas emissions.Passive cooling strategies,particularly radiative cooling(RC)and evaporative cooling(EC),present an alternative approach by harnessing natural processes for temperature regulation.While standalone RC can be affected by weather conditions and EC relies on water availability,Radiative-coupled EC(REC)offers a versatile and sustainable cooling solution suitable for various applications.Here we summarize an overview of the theoretical foundations and mathematical models of REC,encompassing REC by bulk water(REC-BW),REC by perspiration(REC-P),and REC by sorbed water(REC-SW).Moreover,we explore a range of applications,spanning from industrial processes to personal thermal management,and examine the advantages and challenges associated with each REC approach.The significance of REC lies in its potential to revolutionize cooling technology,reduce energy consumption,and minimize the environmental impact.REC-BW can conserve water resources in industrial cooling processes,while REC-P offers innovative solutions for wearable electronics and textiles.REC-SW’s adaptability makes it suitable for food preservation and future potable cooling devices.By addressing the challenges posed by REC,including water consumption,textile design,and optimization of bilayer structures,we can unlock the transformative potential of REC and contribute to sustainable cooling technologies in a warming world.
文摘Accurately predicting the variability of thermal runaway(TR)behavior in lithium-ion(Li-ion)batteries is critical for designing safe and reliable energy storage systems.Unfortunately,traditional calorimetry-based experiments to measure heat release during TR are time-consuming and expensive.Herein,we highlight an exciting transfer learning approach that leverages mass ejection data and metadata from cells to predict heat output variability during TR events.This approach significantly reduces the effort and time to assess thermal risks associated with Li-ion batteries.