期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes 被引量:5
1
作者 Kai Huang Shuai Guo +8 位作者 Ruyue Wang Sen Lin Naveed Hussain Hehe Wei bohan deng Yuanzheng Long Ming Lei Haolin Tang Hui Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第11期1754-1760,共7页
Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water ele... Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices. 展开更多
关键词 2DMOFs DERIVATIVE Coupled arrays Binder-free Oxygen electrode
在线阅读 下载PDF
Rapid synthesis of Pd single‐atom/cluster as highly active catalysts for Suzuki coupling reactions 被引量:2
2
作者 Hehe Wei Xiaoyang Li +7 位作者 bohan deng Jialiang Lang Ya Huang Xingyu Hua Yida Qiao Binghui Ge Jun Ge Hui Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1058-1065,共8页
Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annea... Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance. 展开更多
关键词 Pd single‐atom/cluster catalyst Suzuki coupling reactions Solution rapid annealing Energy barrier High yield
在线阅读 下载PDF
Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts 被引量:1
3
作者 Peng Du Kai Huang +9 位作者 Xiaoyuan Fan Jingteng Ma Naveed Hussain Ruyue Wang bohan deng Binghui Ge Haolin Tang Ru Zhang Ming Lei Hui Wu 《Nano Research》 SCIE EI CSCD 2022年第4期3065-3072,共8页
Being a typical state of the art heterogeneous catalyst,supported noble metal catalyst often demonstrates enhanced catalytic properties.However,a facile synthetic method for realizing large-scale and low-cost supporte... Being a typical state of the art heterogeneous catalyst,supported noble metal catalyst often demonstrates enhanced catalytic properties.However,a facile synthetic method for realizing large-scale and low-cost supported noble metal catalyst is strictly indispensable.To this end,by making use of the strong metal-support interaction(SMSI)and mechanochemical reaction,we introduce an efficient synthetic route to obtain ultrafine Pt and Ir nanoclusters immobilized on diverse substrates by wet chemical milling.We further demonstrate the scaling-up effect of our approach by large-scale ball-milling production of Pt nanoclusters immobilized on TiO_(2)substrate.The synthesized Pt/Ir@Co_(3)O_(4)catalysts exhibit superior oxygen evolution reaction(OER)performance with only 230 and 290 mV overpotential to achieve current density of 10 and 100 mA·cm^(-2),beating the catalytic performance of Co_(3)O_(4)supported Pt or Ir clusters and commercial Ir/C.It is envisioned that the present work strategically directs facile ways for fabricating supported noble metal heterogeneous catalysts. 展开更多
关键词 heterogeneous catalysts metal clusters wet milling large-scale production strong metal–support interaction
原文传递
Nucleation growth quenching for superior cluster catalysts
4
作者 Ruyue Wang Feng Cheng +9 位作者 Yonggang Wang Dongyu Fan bohan deng Yuanzheng Long Haolin Tang Kai Huang Zhaowei Qu Ming Lei Binghui Ge Hui Wu 《Nano Research》 SCIE EI CSCD 2022年第9期7933-7939,共7页
Cluster catalysts are rapidly growing into an important sub-field in heterogeneous catalysis,owing to their distinct geometric structure,neighboring metal sites,and unique electronic structure.Although the thermodynam... Cluster catalysts are rapidly growing into an important sub-field in heterogeneous catalysis,owing to their distinct geometric structure,neighboring metal sites,and unique electronic structure.Although the thermodynamics and kinetics of the formation of nanoparticles have been largely investigated,the precise synthesis of clusters in wet chemical methods still faces great challenges.In the study,a quenching strategy of asymmetric temperature in solution for the rapid generation of vacancy-defect rich clusters is reported.The quenching process can be used to synthesize multitudinous metal compound clusters,including metal oxides,fluorides,oxygen-sulfur compounds,and tungstate.For oxygen evolution reaction(OER),IrO_(2)clusters with abundant oxygen vacancies were obtained and uniformly dispersed in the solution.Compared to commercial IrO_(2),the prepared IrO_(2)cluster can be directly loaded on carbon paper and used as binder-free electrodes,which exhibit higher OER activity and long-term operational stability in alkaline electrolytes.The quenching strategy provides a simple and efficient method for the synthesis of clusters,which has tremendous potential for industrial-scale preparation and application,especially can be further applied to flow electrochemical generators. 展开更多
关键词 rapid-chilling cluster structure transition metal compounds binder-free electrode oxygen evolution reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部