AIM:This study was designed to compare the levels of v5 and v6 splice variants of CD44 evaluated using EITSA test in the serum of patients with colorectal cancer in different stages of progression of the disease estim...AIM:This study was designed to compare the levels of v5 and v6 splice variants of CD44 evaluated using EITSA test in the serum of patients with colorectal cancer in different stages of progression of the disease estimated in pT stage according to WHO score,histopathological grade of malignancy and some clinicopathological features. METHODS:The serum obtained from 114 persons with colorectal adenocarcinomas was examined using ELISA method,pT stage and grade of malignancy of the tumour were examined in formalin fixed and paraffin embedded materials obtained during operation. RESULTS:Only the level of CD44 v5 in the serum of patients before operation with G2 pT4 tumour was lower than that in other probes and the difference was statistically significant. We did not find any other correlations between the level of v5 and v6 CD44 variants and other evaluated parameters. CONCLUSION:The level of CD44 v5 and v6 estimated by ELISA test in the serum can not be used as a prognostic factor in colorectal cancer.展开更多
AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the pre...AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the present study was to assess the levels of final lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the activity of main antioxidative enzymes, superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R) and the level of non-enzymatic antioxidants (glutathione, vitamins C and E). METHODS: Investigations were conducted in 81 primary colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Homogenisation of specimens provided 10% homogenates for our evaluations. Activity of antioxidant enzymes and level of glutathione were determined by spectrophotometry. HPLC revealed levels of vitamins C and E and served as a method to detect terminal products of lipid peroxidation in colorectal cancer. RESULTS: Our studies demonstrated a statistically significant increase in the level of lipid peroxidation products (MDA-Adc. muc.-2.65±0.48 nmol/g, Adc.G3-2.15±0.44 nmol/g, clinical IV stage 4.04±0.47 nmol/g, P<0.001 and 4-HNE-Adc.muc. -0.44±0.07 nmol/g, Adc.G3-0.44±0.10 nmol/g, clinical IV stage 0.52±0.11 nmol/g, P<0.001) as well as increase of Cu,Zn-SOD (Adc.muc.-363±72 U/g, Adc.G3-318?8 U/g, clinical IV stage 421±58 U/g, P<0.001), GSH-Px (Adc.muc. -2143±623 U/g, Adc.G3-2005±591 U/g, clinical IV stage 2467±368 U/g, P<0.001) and GSSG-R (Adc.muc.-880±194 U/g, Adc.G3-795±228 U/g, dinical IV stage 951±243 U/g, P<0.001) in primary tumour comparison with normal colon (MDA-1.39±0.15 nmol/g, HNE-0.29±0.03 nmol/g, Cu, Zn-SOD-117±25 U/g, GSH-Px-1723±189 U/g, GSSG-R-625±112 U/g) especially in mucinous and G3-grade adenocarcinomas as well as clinical IV stage of colorectal cancer. We also observed a decrease of CAT activity (Adc.muc. -40±14 U/g, clinical IV stage 33±18 U/g vs 84±17 U/g, P<0.001) as well as a decreased level of reduced glutathione (clinical IV stage 150±48 nmol/g vs 167±15 nmol/g, P<0.05) and vitamins C and E (vit. C-clinical IV stage 325±92 nmol/g vs 513?4 nmol/g, P<0.001; vit. E-clinical IV stage 13.3±10.3 nmol/g vs 37.5±5.2 nmol/g). CONCLUSION: Colorectal carcinogenesis is associated with serious oxidative stress and confirms that gradual advancement of oxidative-antioxidative disorders is followed by progression of colorectal cancer.展开更多
文摘AIM:This study was designed to compare the levels of v5 and v6 splice variants of CD44 evaluated using EITSA test in the serum of patients with colorectal cancer in different stages of progression of the disease estimated in pT stage according to WHO score,histopathological grade of malignancy and some clinicopathological features. METHODS:The serum obtained from 114 persons with colorectal adenocarcinomas was examined using ELISA method,pT stage and grade of malignancy of the tumour were examined in formalin fixed and paraffin embedded materials obtained during operation. RESULTS:Only the level of CD44 v5 in the serum of patients before operation with G2 pT4 tumour was lower than that in other probes and the difference was statistically significant. We did not find any other correlations between the level of v5 and v6 CD44 variants and other evaluated parameters. CONCLUSION:The level of CD44 v5 and v6 estimated by ELISA test in the serum can not be used as a prognostic factor in colorectal cancer.
基金Supported by Research Grant From the Polish State Committee for Scientific Research 3 PO5B 07922
文摘AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the present study was to assess the levels of final lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the activity of main antioxidative enzymes, superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R) and the level of non-enzymatic antioxidants (glutathione, vitamins C and E). METHODS: Investigations were conducted in 81 primary colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Homogenisation of specimens provided 10% homogenates for our evaluations. Activity of antioxidant enzymes and level of glutathione were determined by spectrophotometry. HPLC revealed levels of vitamins C and E and served as a method to detect terminal products of lipid peroxidation in colorectal cancer. RESULTS: Our studies demonstrated a statistically significant increase in the level of lipid peroxidation products (MDA-Adc. muc.-2.65±0.48 nmol/g, Adc.G3-2.15±0.44 nmol/g, clinical IV stage 4.04±0.47 nmol/g, P<0.001 and 4-HNE-Adc.muc. -0.44±0.07 nmol/g, Adc.G3-0.44±0.10 nmol/g, clinical IV stage 0.52±0.11 nmol/g, P<0.001) as well as increase of Cu,Zn-SOD (Adc.muc.-363±72 U/g, Adc.G3-318?8 U/g, clinical IV stage 421±58 U/g, P<0.001), GSH-Px (Adc.muc. -2143±623 U/g, Adc.G3-2005±591 U/g, clinical IV stage 2467±368 U/g, P<0.001) and GSSG-R (Adc.muc.-880±194 U/g, Adc.G3-795±228 U/g, dinical IV stage 951±243 U/g, P<0.001) in primary tumour comparison with normal colon (MDA-1.39±0.15 nmol/g, HNE-0.29±0.03 nmol/g, Cu, Zn-SOD-117±25 U/g, GSH-Px-1723±189 U/g, GSSG-R-625±112 U/g) especially in mucinous and G3-grade adenocarcinomas as well as clinical IV stage of colorectal cancer. We also observed a decrease of CAT activity (Adc.muc. -40±14 U/g, clinical IV stage 33±18 U/g vs 84±17 U/g, P<0.001) as well as a decreased level of reduced glutathione (clinical IV stage 150±48 nmol/g vs 167±15 nmol/g, P<0.05) and vitamins C and E (vit. C-clinical IV stage 325±92 nmol/g vs 513?4 nmol/g, P<0.001; vit. E-clinical IV stage 13.3±10.3 nmol/g vs 37.5±5.2 nmol/g). CONCLUSION: Colorectal carcinogenesis is associated with serious oxidative stress and confirms that gradual advancement of oxidative-antioxidative disorders is followed by progression of colorectal cancer.