Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as ...Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope I and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partition- ing the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and bench- marking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.展开更多
Detailed research on China's CO_(2) emission pathway of the 2030 peak and 2060 carbon neutrality goals is fundamental to promote China's climate change action.Previous studies on emission pathways have been ba...Detailed research on China's CO_(2) emission pathway of the 2030 peak and 2060 carbon neutrality goals is fundamental to promote China's climate change action.Previous studies on emission pathways have been based on long-term emission data or model analyses.However,few studies have achieved synergy and pathway optimization at both the micro and macro levels or focused on China's 2060 carbon neutrality goal,making it difficult to support the systematic management of national and regional emission pathways.In this study,we developed an integrated CO_(2) emission pathway model,the Chinese Academy of Environmental Planning Carbon Pathways 1.2 model,under China's climate change goals.Our pathway coupled the top-down and bottom-up approaches and conducted optimization analysis under social fairness and optimal cost conditions.The results provide a clear CO_(2) emission pathway and offer insights for implementing fine management of CO_(2) emissions at the national,regional,sectoral,and spatial gridded levels.展开更多
Achieving carbon neutrality is crucial in dealing with climate change and containing the increase in global temperature at below 1.5℃compared with preindustrial levels.During the general debate at the 75th session of...Achieving carbon neutrality is crucial in dealing with climate change and containing the increase in global temperature at below 1.5℃compared with preindustrial levels.During the general debate at the 75th session of the United Nations General Assembly in September 2020,President Xi Jinping announced that China would adopt more vigorous policies and measures against climate change.展开更多
Waste is the bridge linking resource consumption and greenhouse gas generation,and waste landfills are the main anthropogenic source of methane(CH_(4)).The United States(US)-China Joint Glasgow Declaration and the Glo...Waste is the bridge linking resource consumption and greenhouse gas generation,and waste landfills are the main anthropogenic source of methane(CH_(4)).The United States(US)-China Joint Glasgow Declaration and the Global Methane Pledge are committed to reducing tractable CH_(4)emissions;however,differences between the involved countries as well as their generation forecast processes have hampered cooperation.In this study,we provide a deep insight into CH_(4)emissions from municipal solid waste(MSW)landfills and identify the disparities in CH_(4)emissions with local socio-economic conditions.The US and China,the world’s two largest economies,generated approximately 3.73 and 1.48 million tonnes of CH_(4)from 1248 to 1955 landfills in 2012 using the FOD/bottom-up method,with corresponding 26.93 and 11.94 kg per tonne waste and emission value from each landfill ranging between 100 and 105 and 10^(−5)-10^(5)tonnes.The spatial distribution was also quantified and compared with national,state/province,and urban agglomeration perspectives based on historical MSW variations(1990-2015)to clarify the triangular relationship between the economic situation,waste properties,and landfill CH_(4)emissions.High-density CH_(4)emission regions spatially overlapped with highly developed urban agglomerations,positively correlated with the local gross domestic product(GDP)and population(p<0.01),with more emissions generated per thousand US dollars in the US(0.25 tonnes)than in China(0.16 tonnes).The US tertiary industry and China’s secondary industry contributed to high CH_(4)emissions from the waste sector.The increase in tertiary industry might reduce the waste sector’s CH_(4)emissions.This study will help to understand this new triangular relationship and predict future patterns of CH_(4)emissions.展开更多
Under national carbon neutrality targets,energy-producing regions hold significant responsibilities for reducing emissions.Given the diverse economic,industrial,and resource profiles of these regions,tailored strategi...Under national carbon neutrality targets,energy-producing regions hold significant responsibilities for reducing emissions.Given the diverse economic,industrial,and resource profiles of these regions,tailored strategies are essential for designing regional emission pathways.Currently,a systematic analysis that simultaneously integrates broader national climate objectives and regional heterogeneity is lacking,hindering the formulation of localized roadmaps.To address this gap,we propose an integrated analytical framework combing top-down and bottom-up approaches.It considers macro-level constraints(socio-economic development)and micro-level feasibility(renewable energy potential and forest carbon sinks),incorporating diverse regional characteristics such as resource endowment,energy consumption patterns,and industrial structures.We apply this approach to an energy-producing region in central China.Our analysis highlights the need for a clean energy transition that maintains energy security and meets growing electricity demands.By 2060,wind and solar power are projected to account for 87%of electricity generation,representing a substantial shift from the current fossil-fuel-dependent structure.Significant reductions in greenhouse gas emissions can be achieved by optimizing the energy structure,enforcing production controls,and deploying advanced technologies across industry,transportation,and buildings.Additionally,enhancing carbon removal strategies will further support emission reduction targets.This framework demonstrates the feasibility of achieving climate objectives in fossilfuel-dependent regions,providing strategic guidance for integrating regional traits into national decarbonization plans.展开更多
China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoti...China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years.展开更多
Cities are increasingly vital in global carbon mitigation efforts,yet few have specifically tailored carbon neutrality pathways.Furthermore,out-of-boundary indirect greenhouse gas(GHG)emissions,aside from those relate...Cities are increasingly vital in global carbon mitigation efforts,yet few have specifically tailored carbon neutrality pathways.Furthermore,out-of-boundary indirect greenhouse gas(GHG)emissions,aside from those related to electricity and heat imports,are often overlooked in existing pathways,despite their significance in comprehensive carbon mitigation strategies.Addressing this gap,here we introduce an integrated analysis framework focusing on both production and consumption-related GHG emissions.Applied to Wuyishan,a service-oriented city in Southern China,this framework provides a holistic view of a city's carbon neutrality pathway,from a full-scope GHG emission perspective.The findings reveal the equal importance of carbon reduction within and outside the city's boundaries,with out-of-boundary emissions accounting for 42%of Wuyishan's present total GHG emissions.This insight highlights the necessity of including these external factors in GHG accounting and mitigation strategy development.This framework serves as a practical tool for cities,particularly in developing countries,to craft effective carbon neutrality roadmaps that encompass the full spectrum of GHG emissions.展开更多
Cutting down carbon dioxide(CO_(2))emissions from China,the world's top carbon emitter at present,is crucial for global climate mitigation.In its revised Nationally Determined Contribution to the Paris Agreement,C...Cutting down carbon dioxide(CO_(2))emissions from China,the world's top carbon emitter at present,is crucial for global climate mitigation.In its revised Nationally Determined Contribution to the Paris Agreement,China has pledged to achieve carbon neutrality before 2060,with the first step to peak its carbon emissions before 2030.Yet,China's economy is still in the stage of rapid growth,which would pose colossal challenges to peaking CO_(2) emissions in the 2020s.Therefore,a rapid and far-reaching clean transition of the economy in the world's largest developing country is imminent.展开更多
It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on gree...It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction,air quality improvement,and improved health.In the context of carbon peak,carbon neutrality,and clean air policies,this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators.The 18 indicators cover the following five aspects:air pollution and associated weather-climate conditions,progress in structural transition,sources,inks,and mitigation pathway of atmospheric composition,health impacts and benefits of coordinated control,and synergetic governance system and practices.By tracking the progress in each indicator,this perspective presents the major accomplishment of coordinated control,identifies the emerging challenges toward the synergetic governance,and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.展开更多
Spatiotemporal patterns of column-averaged dry air mole fraction of CO2(XCO2)have not been well characterized on a regional scale due to limitations in data availability and precision.This paper addresses these issues...Spatiotemporal patterns of column-averaged dry air mole fraction of CO2(XCO2)have not been well characterized on a regional scale due to limitations in data availability and precision.This paper addresses these issues by examining such patterns in China using the long-term mapping XCO2 dataset(2009-2016)derived from the Greenhouse gases Observing SATellite(GOSAT).XCO2 simulations are also constructed using the high-resolution nested-grid GEOS-Chem model.The following results are found:Firstly,the correlation coefficient between the anthropogenic emissions and XCO2 spatial distribution is nearly zero in summer but up to 0.32 in autumn.Secondly,on average,XCO2 increases by 2.08 ppm every year from2010 to 2015,with a sharp increase of 2.6 ppm in 2013.Lastly,in the analysis of three typical regions,the GOSAT XCO2 time series is inbetter agreement with the GEOS-Chem simulation of XCO2 in the Taklimakan Desert region(the least difference with bias 0.65±0.78 ppm),compared with the northern urban agglomerationregion(-1.3±1.2 ppm)and the northeastern forest region(-1.4±1.4 ppm).The results are likely attributable to uncertainty in both the satellite-retrieved XCO2 data and the model simulation data.展开更多
基金funded by the project entitled"An Emission-Transport-Exposure Model Based Study on the Evaluation of the Environmental Impact of Carbon Market"[grant number:71673107]supported by the National Natural Science Foundation of China
文摘Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope I and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partition- ing the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and bench- marking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.
基金The research was funded by the project“An Emission Scenario Air Quality Model Based Study on the Evaluation of‘Dual Attainments’of Chinese City”[Grant number.72074154],supported by the National Natural Science Foundation of China.
文摘Detailed research on China's CO_(2) emission pathway of the 2030 peak and 2060 carbon neutrality goals is fundamental to promote China's climate change action.Previous studies on emission pathways have been based on long-term emission data or model analyses.However,few studies have achieved synergy and pathway optimization at both the micro and macro levels or focused on China's 2060 carbon neutrality goal,making it difficult to support the systematic management of national and regional emission pathways.In this study,we developed an integrated CO_(2) emission pathway model,the Chinese Academy of Environmental Planning Carbon Pathways 1.2 model,under China's climate change goals.Our pathway coupled the top-down and bottom-up approaches and conducted optimization analysis under social fairness and optimal cost conditions.The results provide a clear CO_(2) emission pathway and offer insights for implementing fine management of CO_(2) emissions at the national,regional,sectoral,and spatial gridded levels.
基金supported by the National Natural Science Foundation of China(72140004).
文摘Achieving carbon neutrality is crucial in dealing with climate change and containing the increase in global temperature at below 1.5℃compared with preindustrial levels.During the general debate at the 75th session of the United Nations General Assembly in September 2020,President Xi Jinping announced that China would adopt more vigorous policies and measures against climate change.
基金supported by the National Natural Science Foundation of China(42077111,72088101,71810107001)the National Key R&D Program of China(2018YFC1900704)+2 种基金State Administration of Foreign Experts project(G2022037007L)Shanghai Ecological Environmental Protection Agency([2021]48)the Technology innovation and development project of the Inner Mongolia Institute of Shanghai Jiao Tong University(2021PT0045-02-01).
文摘Waste is the bridge linking resource consumption and greenhouse gas generation,and waste landfills are the main anthropogenic source of methane(CH_(4)).The United States(US)-China Joint Glasgow Declaration and the Global Methane Pledge are committed to reducing tractable CH_(4)emissions;however,differences between the involved countries as well as their generation forecast processes have hampered cooperation.In this study,we provide a deep insight into CH_(4)emissions from municipal solid waste(MSW)landfills and identify the disparities in CH_(4)emissions with local socio-economic conditions.The US and China,the world’s two largest economies,generated approximately 3.73 and 1.48 million tonnes of CH_(4)from 1248 to 1955 landfills in 2012 using the FOD/bottom-up method,with corresponding 26.93 and 11.94 kg per tonne waste and emission value from each landfill ranging between 100 and 105 and 10^(−5)-10^(5)tonnes.The spatial distribution was also quantified and compared with national,state/province,and urban agglomeration perspectives based on historical MSW variations(1990-2015)to clarify the triangular relationship between the economic situation,waste properties,and landfill CH_(4)emissions.High-density CH_(4)emission regions spatially overlapped with highly developed urban agglomerations,positively correlated with the local gross domestic product(GDP)and population(p<0.01),with more emissions generated per thousand US dollars in the US(0.25 tonnes)than in China(0.16 tonnes).The US tertiary industry and China’s secondary industry contributed to high CH_(4)emissions from the waste sector.The increase in tertiary industry might reduce the waste sector’s CH_(4)emissions.This study will help to understand this new triangular relationship and predict future patterns of CH_(4)emissions.
基金supported by the Nationas supported by the National Natural Science Foundation of China(Grant No.72140004)。
文摘Under national carbon neutrality targets,energy-producing regions hold significant responsibilities for reducing emissions.Given the diverse economic,industrial,and resource profiles of these regions,tailored strategies are essential for designing regional emission pathways.Currently,a systematic analysis that simultaneously integrates broader national climate objectives and regional heterogeneity is lacking,hindering the formulation of localized roadmaps.To address this gap,we propose an integrated analytical framework combing top-down and bottom-up approaches.It considers macro-level constraints(socio-economic development)and micro-level feasibility(renewable energy potential and forest carbon sinks),incorporating diverse regional characteristics such as resource endowment,energy consumption patterns,and industrial structures.We apply this approach to an energy-producing region in central China.Our analysis highlights the need for a clean energy transition that maintains energy security and meets growing electricity demands.By 2060,wind and solar power are projected to account for 87%of electricity generation,representing a substantial shift from the current fossil-fuel-dependent structure.Significant reductions in greenhouse gas emissions can be achieved by optimizing the energy structure,enforcing production controls,and deploying advanced technologies across industry,transportation,and buildings.Additionally,enhancing carbon removal strategies will further support emission reduction targets.This framework demonstrates the feasibility of achieving climate objectives in fossilfuel-dependent regions,providing strategic guidance for integrating regional traits into national decarbonization plans.
基金supported by the National Natural Science Foundation of China,China(72243008,41921005,and 72140003)the Energy Foundation,China.
文摘China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years.
基金supported by the National Natural Science Foundation of China:An emission scenario-air quality modelbased study on the evaluation of“Dual Attainments”of Chinese city(Grant No.72074154)Research on the optimization of synergistic regional pathways under carbon emission peak and carbon neutrality goals(Grant No.72140004)Research on pathway optimization and implementation mechanism of synergistic control of GHGs and pollution for key regions(Grant No.72243008).
文摘Cities are increasingly vital in global carbon mitigation efforts,yet few have specifically tailored carbon neutrality pathways.Furthermore,out-of-boundary indirect greenhouse gas(GHG)emissions,aside from those related to electricity and heat imports,are often overlooked in existing pathways,despite their significance in comprehensive carbon mitigation strategies.Addressing this gap,here we introduce an integrated analysis framework focusing on both production and consumption-related GHG emissions.Applied to Wuyishan,a service-oriented city in Southern China,this framework provides a holistic view of a city's carbon neutrality pathway,from a full-scope GHG emission perspective.The findings reveal the equal importance of carbon reduction within and outside the city's boundaries,with out-of-boundary emissions accounting for 42%of Wuyishan's present total GHG emissions.This insight highlights the necessity of including these external factors in GHG accounting and mitigation strategy development.This framework serves as a practical tool for cities,particularly in developing countries,to craft effective carbon neutrality roadmaps that encompass the full spectrum of GHG emissions.
文摘Cutting down carbon dioxide(CO_(2))emissions from China,the world's top carbon emitter at present,is crucial for global climate mitigation.In its revised Nationally Determined Contribution to the Paris Agreement,China has pledged to achieve carbon neutrality before 2060,with the first step to peak its carbon emissions before 2030.Yet,China's economy is still in the stage of rapid growth,which would pose colossal challenges to peaking CO_(2) emissions in the 2020s.Therefore,a rapid and far-reaching clean transition of the economy in the world's largest developing country is imminent.
基金This work was supported by the National Natural Science Foundation of China(41921005,42130708,and 72140003)and the Energy Foundation.
文摘It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction,air quality improvement,and improved health.In the context of carbon peak,carbon neutrality,and clean air policies,this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators.The 18 indicators cover the following five aspects:air pollution and associated weather-climate conditions,progress in structural transition,sources,inks,and mitigation pathway of atmospheric composition,health impacts and benefits of coordinated control,and synergetic governance system and practices.By tracking the progress in each indicator,this perspective presents the major accomplishment of coordinated control,identifies the emerging challenges toward the synergetic governance,and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600303)the Key Deployment Projects of the Chinese Academy of Sciences (Grant No. ZDRWZS-2019-1-3)
文摘Spatiotemporal patterns of column-averaged dry air mole fraction of CO2(XCO2)have not been well characterized on a regional scale due to limitations in data availability and precision.This paper addresses these issues by examining such patterns in China using the long-term mapping XCO2 dataset(2009-2016)derived from the Greenhouse gases Observing SATellite(GOSAT).XCO2 simulations are also constructed using the high-resolution nested-grid GEOS-Chem model.The following results are found:Firstly,the correlation coefficient between the anthropogenic emissions and XCO2 spatial distribution is nearly zero in summer but up to 0.32 in autumn.Secondly,on average,XCO2 increases by 2.08 ppm every year from2010 to 2015,with a sharp increase of 2.6 ppm in 2013.Lastly,in the analysis of three typical regions,the GOSAT XCO2 time series is inbetter agreement with the GEOS-Chem simulation of XCO2 in the Taklimakan Desert region(the least difference with bias 0.65±0.78 ppm),compared with the northern urban agglomerationregion(-1.3±1.2 ppm)and the northeastern forest region(-1.4±1.4 ppm).The results are likely attributable to uncertainty in both the satellite-retrieved XCO2 data and the model simulation data.