期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge 被引量:4
1
作者 Zhi Su Jun Li +4 位作者 Hua Liang bo-rui zheng Biao Wei Jie Chen Li-Ke Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期455-464,共10页
Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness o... Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application. 展开更多
关键词 plasma flow control flight test dielectric barrier discharge UAV
原文传递
Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
2
作者 bo-rui zheng Ming Xue Chang Ge 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期337-345,共9页
Plasma flow control is a new type of active flow control approach based on plasma pneumatic actuation.Dielectric barrier discharge(DBD) actuators have become a focus of international aerodynamic research.However,the p... Plasma flow control is a new type of active flow control approach based on plasma pneumatic actuation.Dielectric barrier discharge(DBD) actuators have become a focus of international aerodynamic research.However,the practical applications of typical DBDs are largely restricted due to their limited discharge area and low relative-induced velocity.The further improvement of performance will be beneficial for engineering applications.In this paper,high-speed schlieren and high-speed particle image velocimetry(PIV) are employed to study the flow field induced by three kinds of plasma actuations in a static atmosphere,and the differences in induced flow field structure among typical DBD,extended DBD(EX-DBD),and tri-electrode sliding discharge(TED) are compared.The analyzing of the dynamic evolution of the maximum horizontal velocity over time,the velocity profile at a fixed horizontal position,and the momentum and body force in a control volume reveals that the induced velocity peak value and profile velocity height of EX-DBD are higher than those of the other two types of actuation,suggesting that EX-DBD actuation has the strongest temporal aerodynamic effect among the three types of actuations.The TED actuation not only can enlarge the plasma extension but also has the longest duration in the entire pulsed period and the greatest influence on the height and width of the airflow near the wall surface.Thus,the TED actuation has the ability to continuously influencing a larger three-dimensional space above the surface of the nlasma actuator. 展开更多
关键词 plasma flow control dielectric BARRIER DISCHARGE VORTEX dynamics tri-electrode SLIDING DISCHARGE
原文传递
Discharge and flow characterizations of the double-side sliding discharge plasma actuator
3
作者 Qi-Kun He Hua Liang bo-rui zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期274-285,共12页
We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current(DC)voltage.The discharge tests show that sliding discharge and... We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current(DC)voltage.The discharge tests show that sliding discharge and extended discharge are filamentary discharge.The irregular current pulse of sliding discharge fluctuates obviously in the first half cycle,ultimately expands the discharge channel.The instantaneous power and average power consumptions of sliding discharge are larger than those of the extended discharge and dielectric barrier discharge(DBD).The flow characteristics measured by a high-frequency particle-image-velocimetry system together with high-speed schlieren technology show that the opposite jet at the bias DC electrode is induced by sliding discharge,which causes a bulge structure in the discharge channel.The bias DC electrode can deflect the direction of the induced jet,then modifying the properties of the boundary layer.Extended discharge can accelerate the velocity of the starting vortex,improving the horizontal velocity profile by 203%.The momentum growth caused by extended discharge has the largest peak value and the fastest growth rate,compared with sliding discharge and DBD.However,the momentum growth of sliding discharge lasts longer in the whole pulsed cycle,indicating that sliding discharge can also inject more momentum. 展开更多
关键词 plasma double-side sliding discharge induced velocity induced vortex momentum analysis
原文传递
Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
4
作者 Ming-Hao Yu Zhe Wang +2 位作者 Ze-Yang Qiu Bo Lv bo-rui zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期390-400,共11页
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numeri... We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel. 展开更多
关键词 inductively coupled plasma multiphysics field coupling mechanism simulation and experiment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部