The efficient separation of styrene(ST)and ethylbenzene(EB)remains a significant challenge in the petrochemical industry due to their similar physical properties and kinetic molecular sizes.In this study,we cleverly u...The efficient separation of styrene(ST)and ethylbenzene(EB)remains a significant challenge in the petrochemical industry due to their similar physical properties and kinetic molecular sizes.In this study,we cleverly utilized the voids of a fluorescent flexible hydrogen-bonded organic framework(X-HOF-10)constructed from a pure organic phenothiazine derivative with three cyano groups(PTTCN)to selectively adsorb and separate ST and EB based on their slight size difference.Single crystal structure analysis and fluorescence spectra reveal that the adsorption process of ST involves a gate-opening mechanism accompanied by a fluorescent color switch behavior.Upon simple heating,ST can be released from the voids through a gate-closing process.Conversely,exposure to EB vapor does not promote X-HOF-10a to adsorb EB due to its slightly larger size in comparison with ST,facilitating a single crystal to single crystal transition,leading to the formation of a new non-porous crystal without EB.Under equimolar vapor condition,X-HOF-10a transforms into X-HOF-10 rather than X-HOF-11 owing to the superior stability of X-HOF-10over X-HOF-11,accompanied by selective adsorption of ST.The purity of ST can reach 92%after release from the framework,which further increases to over 98%when exposed to the mixed vapor containing 90%ST.Additionally,this HOF material exhibits recyclability without any discernible loss in performance.展开更多
AIM:To investigate the effects of carbon dioxide (CO2) and helium insufflation administered at different pressures on the growth and apoptosis of cultured human gastric cancer cells. METHODS:The gastric cancer cells M...AIM:To investigate the effects of carbon dioxide (CO2) and helium insufflation administered at different pressures on the growth and apoptosis of cultured human gastric cancer cells. METHODS:The gastric cancer cells MKN-45 were exposed to a CO2 and helium environment maintained at different pressures (0, 5, 10 and 15 mmHg). The cells were exposed to simulated pneumoperitoneum environment for 4 h, and pH of the culture media was measured after it was moved to normal conditions for 0, 2, 4, 6 and 8 h. Proliferation viability of MKN-45 was examined by 3-4,5Dimethylthiazol-2-yl,5-diphenyltetrazolium bromide or triazolyl blue (MTT) assay after it was moved to normal conditions. Apoptotic ratio was measured by Annexin V-FITC/PI double labelled staining. RESULTS:The pH of media was acid and recovered to normal after 4 h in the CO2 group while it was basic in the helium group. There was no difference between CO2 groups (under 10 mmHg ) and control group (P > 0.05) in the proliferative viability of the cells. The cultured cells exposed to 15 mmHg CO2 environment grew more slowly than control group from 4 to 7 d (P < 0.01 ) while there was no difference from 1 to 3 d (P > 0.05). The proliferative viability in helium group was not obviously different from the control group (P > 0.05). The apoptotic ratio of the cultured cells was markedly higher than that of the control group (P < 0.01) at 10 and 15 mmHg CO2 insufflation pressure. In helium group, the apoptotic ratio was not obviously different from the control group (P > 0.05). CONCLUSION:There is no obvious effect in the proliferation and apoptosis of MKN-45 cells under 10 mmHg CO2 insufflation pressure and helium in any pressure. Fifteen mmHg CO2 insufflation pressure can inhibit the proliferation of the cells and improve apoptosis.展开更多
BACKGROUND Reports in the field of robotic surgery for rectal cancer are increasing year by year.However,most of these studies enroll patients at a relatively early stage and have small sample sizes.In fact,studies on...BACKGROUND Reports in the field of robotic surgery for rectal cancer are increasing year by year.However,most of these studies enroll patients at a relatively early stage and have small sample sizes.In fact,studies only on patients with locally advanced rectal cancer(LARC)and with relatively large sample sizes are lacking.AIM To investigate whether the short-term outcomes differed between robotic-assisted proctectomy(RAP)and laparoscopic-assisted proctectomy(LAP)for LARC.METHODS The clinicopathological data of patients with LARC who underwent robotic-or laparoscopic-assisted radical surgery between January 2015 and October 2019 were collected retrospectively.To reduce patient selection bias,we used the clinical baseline characteristics of the two groups of patients as covariates for propensity-score matching(PSM)analysis.Short-term outcomes were compared between the two groups.RESULTS The clinical features were well matched in the PSM cohort.Compared with the LAP group,the RAP group had less intraoperative blood loss,lower volume of pelvic cavity drainage,less time to remove the pelvic drainage tube and urinary catheter,longer distal resection margin and lower rates of conversion(P<0.05).However,the time to recover bowel function,the harvested lymph nodes,the postoperative length of hospital stay,and the rate of unplanned readmission within 30 days postoperatively showed no difference between the two groups(P>0.05).The rates of total complications and all individual complications were similar between the RAP and LAP groups(P>0.05).CONCLUSION This retrospective study indicated that RAP is a safe and feasible method for LARC with better short-term outcomes than LAP,but we have to admit that the clinically significant of part of indicators are relatively small in the practical situation.展开更多
Photodynamic therapy (PDT) is an attractive clinical technique for cancer treatment. However, the poor solubility and weak cellular internalization of the molecule-photosensitizers, as well as the exceedingly short li...Photodynamic therapy (PDT) is an attractive clinical technique for cancer treatment. However, the poor solubility and weak cellular internalization of the molecule-photosensitizers, as well as the exceedingly short lifetime and limited diffusion distance of the generated reactive oxygen species (ROS) in cytoplasm directly restricted the therapeutic efficiency of conventional PDT. In this study, we proposed a facile strategy for improving PDT of cancer based on a mitochondria-targeted nanophotosensitizer. The molecule-photosensitizer chlorin e6 was covalently attached on the internal and external surfaces of the mesoporous silica nanoparticles. Then, the triphenylphosphonium was anchored on the nanoparticles for selectively targeting mitochondria. When irradiated with laser, the nanophotosensitizer can generate a large amount of ROS in mitochondria, thus causing the mitochondrial dysfunction and irreversible cell apoptosis. In vitro and in vivo studies demonstrated that the nanophotosensitizer could boost the treatment efficiency against cancer cells and xenograft tumor models.展开更多
Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumve...Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas.展开更多
Most of the recent organic solar cells(OSCs)with top-of-the-line efficiencies are processed from organic solvents with a high vapor pressure such as CF in nitrogen-filled glovebox,which is not feasible for large-area ...Most of the recent organic solar cells(OSCs)with top-of-the-line efficiencies are processed from organic solvents with a high vapor pressure such as CF in nitrogen-filled glovebox,which is not feasible for large-area manufacturing.Herein,we cast active layers with both aromatic hydrocarbon solvents and halogenated solvents without any solvent additive or post-treatment,as well as interlayers with water and methanol in air(35%relative humidity)for efficient OSCs,except cathode electrode's evaporation is in vacuum.Compared to the PM6:Y6 system that is processed from CF,the PM6:BTP-ClBr2 system demonstrates good efficiency of 16.28%processed from CB and the device based on PM6:BTP-4Cl achieves 16.33%using TMB as its solvent for the active layer.These are among the highest efficiencies for CB-and TMB-processed binary OSCs to date.The molecular packing and phase separation length scales of each combination depend strongly on the solvent,and the overall morphology is the result of the interplay between solvent evaporation(kinetics)and materials miscibility(thermodynamics).Different solvents are required to realize the optimal morphology due to the different miscibility between the donor and acceptor.Finally,17.36%efficiency was achieved by incorporating PC71BM for TMB-processed devices.Our result provides insights into the effect of processing solvent and shows the potential of realizing high-performance OSCs in conditions relevant for industrial fabrication.展开更多
Transition metal-based bimetallic oxides can effectively activate peroxymonosulfate(PMS) for the degradation of organic contaminants, which may be attributed to the enhanced electron transfer efficiency between transi...Transition metal-based bimetallic oxides can effectively activate peroxymonosulfate(PMS) for the degradation of organic contaminants, which may be attributed to the enhanced electron transfer efficiency between transition metals. Here, we investigated the high-efficiency catalytic activation reaction of PMS on a well-defined bimetallic Fe-Mn nanocomposite(BFMN) catalyst. The surface topography and chemical information of BFMN were simultaneously mapped with nanoscale resolution. Rhodamine B(Rh B, as a model pollutant) was used to evaluate the oxidation activity of PMS activation system. The maximum absorption peak of Rh B obviously blue shifted from 554 nm to 501 nm, and decreased sharply to disappear completely within 60 min. The removal performance is better than most of the reported single transition metal oxide. X-ray photoelectron spectroscopy(XPS) imaging of the BFMN electronic structure after catalytic activation confirmed that the accelerated internal electron transfer is mainly caused by the synergy effect of Mn and Fe sites at the catalysis boundary. The outstanding ability of BFMN for PMS chemical adsorption and activation may attribute to the enhanced covalency and reactivity of Mn-O. These results of this study can advance understandings on the origins of bimetallic oxides activity for PMS activation and developing the efficient metal oxide catalysts in real practice.展开更多
In this work,we fabricated an efficient pre-catalyst based on(Ni,Co)S2solid solution with hierarchical architecture and high porosity to boost urea oxidation reaction and electrocatalytic oxidation of organic small mo...In this work,we fabricated an efficient pre-catalyst based on(Ni,Co)S2solid solution with hierarchical architecture and high porosity to boost urea oxidation reaction and electrocatalytic oxidation of organic small molecules.The interaction between Ni and Co can optimize the electronic structure,resulting in the improved conductivity and accelerated charge transfer rate.The 2D/3D architecture can enrich more active species and endow the mass and electron transport to facilitate the surface oxidation and the following catalytic process.Post-structure and catalytic characterizations confirm the surface oxidation of(Ni,Co)S_(2)during the stability test,and the in-situ formed Co(Ni)based(oxy)hydroxides exhibit superior catalytic activity and facilitated charge transfer ability.As a result,the optimal(Ni,Co)S_(2)solid solution pre-catalyst displays facilitated catalytic behavior and good stability for multifunctional electrocatalytic oxidation,in which a high conversion of benzyl alcohol(97.50%),a good selectivity to benzoic acid(93.78%)and a satisfied faraday efficiency(91.86%)can be achieved.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
The blisk is a core component of an aero-engine,and electrochemical machining(ECM)is the primary method for its manufacture.Among several ECM methods for blisks,multi-tool synchronous machining is the most efficient a...The blisk is a core component of an aero-engine,and electrochemical machining(ECM)is the primary method for its manufacture.Among several ECM methods for blisks,multi-tool synchronous machining is the most efficient and advantageous for machining channels.The allowance distribution of the blank after blisk channel machining directly influences the blade profile accuracy.This paper proposes a trajectory control strategy to homogenize the allowance distribution of the blisk channel in multi-tool ECM.The strategy includes the design of the three-dimensional space motion of the tool and blisk,as well as the regulated feed speed.The structural characteristics of the blisk channel and the principle of ECM allow for designing and optimizing the multidimensional trajectory.The electric field simulations elucidate the influence law of the three-axis feed speed on the side gap.An algorithm is adopted to iteratively optimize the speeds for different positions to realize multi-dimensional motion control and allowance homogenization.The proposed trajectory control strategy is applied to ECM experiments for the blisk channel.Compared with the constant feed speed mode,the regulated speed strategy reduces the maximum allowance difference between the convex(CV)profiles by 36.18%and that between the concave(CC)profiles by 37.73%.Subsequently,the one-time ECM of eight blisk channels was successfully realized.The average time for a single channel was 12.5 min,significantly improving the machining efficiency.In conclusion,the proposed method is effective and can be extended for synchronously machining various blisk types with twisted channels.展开更多
Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametr...Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametric bank angle profiles in Mars atmospheric entry missions.The methodology includes a universal approach to handling path constraints and a reliable solution method based on the Particle Swarm Optimization(PSO)algorithm.For illustrative purposes,a mission with the objective of maximizing terminal altitude is considered.The original entry optimization problem is converted into optimizing three coefficients for the bank angle profiles with terminal constraints by formulating a parametric Mars entry bank angle profile and constraint handling methods.The parameter optimization problem is addressed using the PSO algorithm,with reliability enhanced by increasing the PSO swarm size.To improve computational efficiency,an enhanced Deep Operator Network(Deep ONet)is used as a dynamics solver to predict terminal states under various bank angle profiles rapidly.Numerical simulations demonstrate that the proposed methodology ensures reliable convergence with a sufficiently large PSO swarm while maintaining high computational efficiency facilitated by the neural-network-based dynamics solver.Compared to the existing methodologies,this methodology offers a streamlined process,the reduced sensitivity to initial guesses,and the improved computational efficiency.展开更多
Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid...Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.展开更多
A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introdu...A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.展开更多
Chiral covalent organic frameworks(CCOFs) featuring chirality, stability, and good porosity have attracted a considerable amount of attention due to their important applications, such as asymmetric catalysis, chiral s...Chiral covalent organic frameworks(CCOFs) featuring chirality, stability, and good porosity have attracted a considerable amount of attention due to their important applications, such as asymmetric catalysis, chiral separation, and chiral recognition. In this study, a β-cyclodextrin(β-CD) covalent organic framework(β-CD-COF) diluted with polysiloxane OV-1701 was explored as a novel chiral stationary phase(CSP) for gas chromatography(GC) separation of racemates. The β-CD-COF coated capillary column had excellent selectivity, not only for the separation of linear alkanes, linear alcohols, fatty acid methyl esters mixture, the Grob mixture and positional isomers, but also for the resolution of chiral compounds, including chiral alcohols, aldehydes, ethers, and amino acid derivatives. In addition, the β-CD-COF-coated capillary column presented good repeatability and reproducibility. This work indicated the great potential of the CCOFs coated capillary column for the chromatographic separation of enantiomers.展开更多
In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle...In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle velocity and overload control is to adjust the voltage or other parameters of pulse power supply. It would be easy to change velocity accurately in large wide. Another widespread concern problem is launching the spinning stability projectile by railgun. This paper designed a new structure of additional rails to generate an unsymmetrical magnetic field to produce rotational torque in armature. The structure is simple and can control the rotation rate by linear changing the barrel parameters. The calculation formulas of interior ballistic are derived by Biot-Safar law. The important parameter is the deflection angle of the additional rails relative to the symmetry plane of main rail. The larger the angle, the greater the rotation torque generated in the armature. To maintain the flight stability of the projectile, the barrel structural parameters should be proportional to the projectile structural parameters. When changing the muzzle velocity, the rotation rate will also be the equal proportion change. So that the gyro stability is the same. The experiment proves that the railgun designed in this paper can launch the projectile to rotate. And the rotational projectile may not cause the transition or much arcs. This method expands the application of the railgun.展开更多
基金supported by the Scientific Research Foundation of Tianjin Normal University(No.5RL151)the Tianjin Research Innovation Project for Postgraduate Students(No.2022SKY252)+1 种基金the National Natural Science Foundation of China(NSFC,Nos.22265026,22002108)the Project of Qinghai Science&Technology Department(No.2024-ZJ-935)。
文摘The efficient separation of styrene(ST)and ethylbenzene(EB)remains a significant challenge in the petrochemical industry due to their similar physical properties and kinetic molecular sizes.In this study,we cleverly utilized the voids of a fluorescent flexible hydrogen-bonded organic framework(X-HOF-10)constructed from a pure organic phenothiazine derivative with three cyano groups(PTTCN)to selectively adsorb and separate ST and EB based on their slight size difference.Single crystal structure analysis and fluorescence spectra reveal that the adsorption process of ST involves a gate-opening mechanism accompanied by a fluorescent color switch behavior.Upon simple heating,ST can be released from the voids through a gate-closing process.Conversely,exposure to EB vapor does not promote X-HOF-10a to adsorb EB due to its slightly larger size in comparison with ST,facilitating a single crystal to single crystal transition,leading to the formation of a new non-porous crystal without EB.Under equimolar vapor condition,X-HOF-10a transforms into X-HOF-10 rather than X-HOF-11 owing to the superior stability of X-HOF-10over X-HOF-11,accompanied by selective adsorption of ST.The purity of ST can reach 92%after release from the framework,which further increases to over 98%when exposed to the mixed vapor containing 90%ST.Additionally,this HOF material exhibits recyclability without any discernible loss in performance.
基金The "11th Five-Year" Program of People’s Liberation Army of China (PLA), No. 06MB240
文摘AIM:To investigate the effects of carbon dioxide (CO2) and helium insufflation administered at different pressures on the growth and apoptosis of cultured human gastric cancer cells. METHODS:The gastric cancer cells MKN-45 were exposed to a CO2 and helium environment maintained at different pressures (0, 5, 10 and 15 mmHg). The cells were exposed to simulated pneumoperitoneum environment for 4 h, and pH of the culture media was measured after it was moved to normal conditions for 0, 2, 4, 6 and 8 h. Proliferation viability of MKN-45 was examined by 3-4,5Dimethylthiazol-2-yl,5-diphenyltetrazolium bromide or triazolyl blue (MTT) assay after it was moved to normal conditions. Apoptotic ratio was measured by Annexin V-FITC/PI double labelled staining. RESULTS:The pH of media was acid and recovered to normal after 4 h in the CO2 group while it was basic in the helium group. There was no difference between CO2 groups (under 10 mmHg ) and control group (P > 0.05) in the proliferative viability of the cells. The cultured cells exposed to 15 mmHg CO2 environment grew more slowly than control group from 4 to 7 d (P < 0.01 ) while there was no difference from 1 to 3 d (P > 0.05). The proliferative viability in helium group was not obviously different from the control group (P > 0.05). The apoptotic ratio of the cultured cells was markedly higher than that of the control group (P < 0.01) at 10 and 15 mmHg CO2 insufflation pressure. In helium group, the apoptotic ratio was not obviously different from the control group (P > 0.05). CONCLUSION:There is no obvious effect in the proliferation and apoptosis of MKN-45 cells under 10 mmHg CO2 insufflation pressure and helium in any pressure. Fifteen mmHg CO2 insufflation pressure can inhibit the proliferation of the cells and improve apoptosis.
基金Supported by the Infrastructure Supporting Project of Jiangxi Scientific Research Institute,No.20142BBA13039.
文摘BACKGROUND Reports in the field of robotic surgery for rectal cancer are increasing year by year.However,most of these studies enroll patients at a relatively early stage and have small sample sizes.In fact,studies only on patients with locally advanced rectal cancer(LARC)and with relatively large sample sizes are lacking.AIM To investigate whether the short-term outcomes differed between robotic-assisted proctectomy(RAP)and laparoscopic-assisted proctectomy(LAP)for LARC.METHODS The clinicopathological data of patients with LARC who underwent robotic-or laparoscopic-assisted radical surgery between January 2015 and October 2019 were collected retrospectively.To reduce patient selection bias,we used the clinical baseline characteristics of the two groups of patients as covariates for propensity-score matching(PSM)analysis.Short-term outcomes were compared between the two groups.RESULTS The clinical features were well matched in the PSM cohort.Compared with the LAP group,the RAP group had less intraoperative blood loss,lower volume of pelvic cavity drainage,less time to remove the pelvic drainage tube and urinary catheter,longer distal resection margin and lower rates of conversion(P<0.05).However,the time to recover bowel function,the harvested lymph nodes,the postoperative length of hospital stay,and the rate of unplanned readmission within 30 days postoperatively showed no difference between the two groups(P>0.05).The rates of total complications and all individual complications were similar between the RAP and LAP groups(P>0.05).CONCLUSION This retrospective study indicated that RAP is a safe and feasible method for LARC with better short-term outcomes than LAP,but we have to admit that the clinically significant of part of indicators are relatively small in the practical situation.
基金supported by the National Natural Science Foundation of China(Nos. 21535004, 91753111, 21874086, 21775094, 21505087, 21390411)the Key Research and Development Program of Shandong Province(No. 2018YFJH0502)
文摘Photodynamic therapy (PDT) is an attractive clinical technique for cancer treatment. However, the poor solubility and weak cellular internalization of the molecule-photosensitizers, as well as the exceedingly short lifetime and limited diffusion distance of the generated reactive oxygen species (ROS) in cytoplasm directly restricted the therapeutic efficiency of conventional PDT. In this study, we proposed a facile strategy for improving PDT of cancer based on a mitochondria-targeted nanophotosensitizer. The molecule-photosensitizer chlorin e6 was covalently attached on the internal and external surfaces of the mesoporous silica nanoparticles. Then, the triphenylphosphonium was anchored on the nanoparticles for selectively targeting mitochondria. When irradiated with laser, the nanophotosensitizer can generate a large amount of ROS in mitochondria, thus causing the mitochondrial dysfunction and irreversible cell apoptosis. In vitro and in vivo studies demonstrated that the nanophotosensitizer could boost the treatment efficiency against cancer cells and xenograft tumor models.
文摘Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas.
基金financial support from National Natural Science Foundation of China 21927811support from the National Key Research and Development Program of China(No.2019YFA0705900)funded by MOST+7 种基金the Basic and Applied Basic Research Major Program of Guangdong Province(No.2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(project number 2019B121205002)the Shen Zhen Technology and Innovation Commission(project number JCYJ20170413173814007,JCYJ20170818113905024)the Hong Kong Research Grants Council(Research Impact Fund R6021-18,collaborative research fund C6023-19G,project numbers 16309218,16310019,and 16303917)Hong Kong Innovation and Technology Commission for the support through projects ITC-CNERC14SC01 and ITS/471/18National Natural Science Foundation of China(NSFC,No.91433202)support from Natural Science Foundation of Top Talent of SZTU(grant number:20200205)support from Hong Kong Ph D Fel owship Scheme PF17-03929。
文摘Most of the recent organic solar cells(OSCs)with top-of-the-line efficiencies are processed from organic solvents with a high vapor pressure such as CF in nitrogen-filled glovebox,which is not feasible for large-area manufacturing.Herein,we cast active layers with both aromatic hydrocarbon solvents and halogenated solvents without any solvent additive or post-treatment,as well as interlayers with water and methanol in air(35%relative humidity)for efficient OSCs,except cathode electrode's evaporation is in vacuum.Compared to the PM6:Y6 system that is processed from CF,the PM6:BTP-ClBr2 system demonstrates good efficiency of 16.28%processed from CB and the device based on PM6:BTP-4Cl achieves 16.33%using TMB as its solvent for the active layer.These are among the highest efficiencies for CB-and TMB-processed binary OSCs to date.The molecular packing and phase separation length scales of each combination depend strongly on the solvent,and the overall morphology is the result of the interplay between solvent evaporation(kinetics)and materials miscibility(thermodynamics).Different solvents are required to realize the optimal morphology due to the different miscibility between the donor and acceptor.Finally,17.36%efficiency was achieved by incorporating PC71BM for TMB-processed devices.Our result provides insights into the effect of processing solvent and shows the potential of realizing high-performance OSCs in conditions relevant for industrial fabrication.
基金supported by the National Key Research and Development Program of China (No. 2020YFC1808300)National Natural Science Foundation of China (Nos. 42077185, 41772264)the Research Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2020Z002)。
文摘Transition metal-based bimetallic oxides can effectively activate peroxymonosulfate(PMS) for the degradation of organic contaminants, which may be attributed to the enhanced electron transfer efficiency between transition metals. Here, we investigated the high-efficiency catalytic activation reaction of PMS on a well-defined bimetallic Fe-Mn nanocomposite(BFMN) catalyst. The surface topography and chemical information of BFMN were simultaneously mapped with nanoscale resolution. Rhodamine B(Rh B, as a model pollutant) was used to evaluate the oxidation activity of PMS activation system. The maximum absorption peak of Rh B obviously blue shifted from 554 nm to 501 nm, and decreased sharply to disappear completely within 60 min. The removal performance is better than most of the reported single transition metal oxide. X-ray photoelectron spectroscopy(XPS) imaging of the BFMN electronic structure after catalytic activation confirmed that the accelerated internal electron transfer is mainly caused by the synergy effect of Mn and Fe sites at the catalysis boundary. The outstanding ability of BFMN for PMS chemical adsorption and activation may attribute to the enhanced covalency and reactivity of Mn-O. These results of this study can advance understandings on the origins of bimetallic oxides activity for PMS activation and developing the efficient metal oxide catalysts in real practice.
基金supported by National Natural Science Foundation of China(Nos.21927811,51602182,21808129)the Natural Science Foundation of Shandong Province,China(No.ZR2021ME032)。
文摘In this work,we fabricated an efficient pre-catalyst based on(Ni,Co)S2solid solution with hierarchical architecture and high porosity to boost urea oxidation reaction and electrocatalytic oxidation of organic small molecules.The interaction between Ni and Co can optimize the electronic structure,resulting in the improved conductivity and accelerated charge transfer rate.The 2D/3D architecture can enrich more active species and endow the mass and electron transport to facilitate the surface oxidation and the following catalytic process.Post-structure and catalytic characterizations confirm the surface oxidation of(Ni,Co)S_(2)during the stability test,and the in-situ formed Co(Ni)based(oxy)hydroxides exhibit superior catalytic activity and facilitated charge transfer ability.As a result,the optimal(Ni,Co)S_(2)solid solution pre-catalyst displays facilitated catalytic behavior and good stability for multifunctional electrocatalytic oxidation,in which a high conversion of benzyl alcohol(97.50%),a good selectivity to benzoic acid(93.78%)and a satisfied faraday efficiency(91.86%)can be achieved.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金co-supported by the National Natural Science Foundation of China(No.52075253)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Industrial Technology Development Program(No.JCKY2021605B026)。
文摘The blisk is a core component of an aero-engine,and electrochemical machining(ECM)is the primary method for its manufacture.Among several ECM methods for blisks,multi-tool synchronous machining is the most efficient and advantageous for machining channels.The allowance distribution of the blank after blisk channel machining directly influences the blade profile accuracy.This paper proposes a trajectory control strategy to homogenize the allowance distribution of the blisk channel in multi-tool ECM.The strategy includes the design of the three-dimensional space motion of the tool and blisk,as well as the regulated feed speed.The structural characteristics of the blisk channel and the principle of ECM allow for designing and optimizing the multidimensional trajectory.The electric field simulations elucidate the influence law of the three-axis feed speed on the side gap.An algorithm is adopted to iteratively optimize the speeds for different positions to realize multi-dimensional motion control and allowance homogenization.The proposed trajectory control strategy is applied to ECM experiments for the blisk channel.Compared with the constant feed speed mode,the regulated speed strategy reduces the maximum allowance difference between the convex(CV)profiles by 36.18%and that between the concave(CC)profiles by 37.73%.Subsequently,the one-time ECM of eight blisk channels was successfully realized.The average time for a single channel was 12.5 min,significantly improving the machining efficiency.In conclusion,the proposed method is effective and can be extended for synchronously machining various blisk types with twisted channels.
基金supported in part by the National Defense Basic Scientific Research Program of China(No.JCKY2021603B030)the Shenzhen Fundamental Research Program,China(No.JCYJ20220818102601004)the Science Center Program of National Natural Science Foundation of China(No.62188101)。
文摘Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametric bank angle profiles in Mars atmospheric entry missions.The methodology includes a universal approach to handling path constraints and a reliable solution method based on the Particle Swarm Optimization(PSO)algorithm.For illustrative purposes,a mission with the objective of maximizing terminal altitude is considered.The original entry optimization problem is converted into optimizing three coefficients for the bank angle profiles with terminal constraints by formulating a parametric Mars entry bank angle profile and constraint handling methods.The parameter optimization problem is addressed using the PSO algorithm,with reliability enhanced by increasing the PSO swarm size.To improve computational efficiency,an enhanced Deep Operator Network(Deep ONet)is used as a dynamics solver to predict terminal states under various bank angle profiles rapidly.Numerical simulations demonstrate that the proposed methodology ensures reliable convergence with a sufficiently large PSO swarm while maintaining high computational efficiency facilitated by the neural-network-based dynamics solver.Compared to the existing methodologies,this methodology offers a streamlined process,the reduced sensitivity to initial guesses,and the improved computational efficiency.
基金Project(2011AA06A107)supported by the National High Technology Research and Development Program of ChinaProject(2014M551348)supported by China Postdoctoral Science FoundationProject(51504098)supported by the National Natural Science Foundation of China
文摘Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.
文摘A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.
基金financially supported by the National Key R&D Program of China (No.2019YFA0904104)。
文摘Chiral covalent organic frameworks(CCOFs) featuring chirality, stability, and good porosity have attracted a considerable amount of attention due to their important applications, such as asymmetric catalysis, chiral separation, and chiral recognition. In this study, a β-cyclodextrin(β-CD) covalent organic framework(β-CD-COF) diluted with polysiloxane OV-1701 was explored as a novel chiral stationary phase(CSP) for gas chromatography(GC) separation of racemates. The β-CD-COF coated capillary column had excellent selectivity, not only for the separation of linear alkanes, linear alcohols, fatty acid methyl esters mixture, the Grob mixture and positional isomers, but also for the resolution of chiral compounds, including chiral alcohols, aldehydes, ethers, and amino acid derivatives. In addition, the β-CD-COF-coated capillary column presented good repeatability and reproducibility. This work indicated the great potential of the CCOFs coated capillary column for the chromatographic separation of enantiomers.
文摘In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle velocity and overload control is to adjust the voltage or other parameters of pulse power supply. It would be easy to change velocity accurately in large wide. Another widespread concern problem is launching the spinning stability projectile by railgun. This paper designed a new structure of additional rails to generate an unsymmetrical magnetic field to produce rotational torque in armature. The structure is simple and can control the rotation rate by linear changing the barrel parameters. The calculation formulas of interior ballistic are derived by Biot-Safar law. The important parameter is the deflection angle of the additional rails relative to the symmetry plane of main rail. The larger the angle, the greater the rotation torque generated in the armature. To maintain the flight stability of the projectile, the barrel structural parameters should be proportional to the projectile structural parameters. When changing the muzzle velocity, the rotation rate will also be the equal proportion change. So that the gyro stability is the same. The experiment proves that the railgun designed in this paper can launch the projectile to rotate. And the rotational projectile may not cause the transition or much arcs. This method expands the application of the railgun.