期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Molecular Cloning,Subcellular Localization and Expression Analyses of PdbHLH57 Transcription Factor in Colored-Leaf Poplar
1
作者 yuhang Li Li Sun +6 位作者 Tao Wang bingjun yu Zhihong Gao Xiaochun Shu Tengyue Yan Weibing Zhuang Zhong Wang 《Phyton-International Journal of Experimental Botany》 2025年第4期1211-1223,共13页
bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the pres... bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the present study,a PdbHLH57 gene,belonging to the bHLH IIIf group,was characterized,which was isolated and cloned from the colored-leaf poplar‘Zhongshancaiyun’(ZSCY).The cDNA sequence of PdbHLH57 was 1887 base pairs,and the protein encoded by PdbHLH57 had 628 amino acids,the isoelectric point and molecular weight of which were 6.26 and 69.75 kDa,respectively.Through bioinformatics analysis,PdbHLH57 has been classified into the IIIf bHLH subgroup,with many members of this subgroup known to participate in anthocyanin biosynthesis.The subcellular localization analysis conducted in the leaf protoplasts of‘ZSCY’revealed that the PdbHLH57 protein is specifically localized in the nucleus.The transcription activation analysis was also conducted,and the results showed that the PdbHLH57 protein had self-transcription activation.To better explore the functions of the PdbHLH57 protein,two parts of this protein(PdbHLH57-1,PdbHLH57-2)were split to detect their transcriptional activation activity.The results indicated that PdbHLH57-1(1-433aa)had self-transcription activation,and PdbHLH57-2(433-628aa)had no transcription activation.The expression of PdbHLH57 peaked in June during different developmental stages in‘ZSCY’,and it was most highly expressed in the phloem among various tissues.These findings offer a basis for understanding the role of PdbHLH57 in colored-leaf poplar. 展开更多
关键词 Transcription factors PdbHLH57 subcellular localization transcription activation analysis expression pattern colored-leaf poplar
在线阅读 下载PDF
Friction-Induced Nanofabrication: A Review 被引量:4
2
作者 bingjun yu Linmao Qian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期26-51,共26页
As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improvin... As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improving the production and lifestyle of the human.Photo lithography and other alternative technologies,such as nanoimprinting,electron beam lithography,focused ion beam cutting,and scanning probe lithography,have brought great progress of semiconductor industry,IC manufacturing and micro/nanoelectromechanical system(MEMS/NEMS)devices.However,there remains a lot of challenges,relating to the resolution,cost,speed,and so on,in realizing high-quality products with further development of nanotechnology.None of the existing techniques can satisfy all the needs in nanoscience and nanotechnology at the same time,and it is essential to explore new nanofabrication methods.As a newly developed scanning probe microscope(SPM)-based lithography,friction-induced nanofabrication provides opportunities for maskless,flexible,low-damage,low-cost and environment-friendly processing on a wide variety of materials,including silicon,quartz,glass surfaces,and so on.It has been proved that this fabrication route provides with a broad application prospect in the fabrication of nanoimprint templates,microfluidic devices,and micro/nano optical structures.This paper hereby involved the principals and operations of friction-induced nanofabrication,including friction-induced selective etching,and the applications were reviewed as well for looking ahead at opportunities and challenges with nanotechnology development.The present review will not only enrich the knowledge in nanotribology,but also plays a positive role in promoting SPM-based nanofabrication. 展开更多
关键词 Scanning probe microscope Tip-based lithography Friction-induced nanofabrication Friction-induced selective etching
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部