Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and ...Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and cost-effectiveness is paramount.By leveraging paper for its sustainability,biocompatibility,and inherent porous structure,herein,a solution-processed all-paper resistive pressure sensor is designed with outstanding performance.A ternary composite paste,comprising a compressible 3D carbon skeleton,conductive polymer poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate),and cohesive carbon nanotubes,is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro-and nano-structured surface.Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper,this creates a multiscale hierarchical contact interface between electrodes,significantly enhancing sensitivity(1014 kPa-1)and expanding the detection range(up to 300 kPa)of as-resulted all-paper pressure sensor with low detection limit and power consumption.Its versatility ranges from subtle wrist pulses,robust finger taps,to large-area spatial force detection,highlighting its intricate submillimetermicrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode.Ultimately,this all-paper resistive pressure sensor,with its superior sensing capabilities,large-scale fabrication potential,and cost-effectiveness,paves the way for next-generation wearable electronics,ushering in an era of advanced,sustainable technological solutions.展开更多
Although Ti3 C2 MXene sheets have attracted extensive attention in lithium-ion storage techniques,their restacking makes against and even hinders the Li ions diffusion within them,thereby decreasing the capacity as we...Although Ti3 C2 MXene sheets have attracted extensive attention in lithium-ion storage techniques,their restacking makes against and even hinders the Li ions diffusion within them,thereby decreasing the capacity as well as rate performance of conventional MXene anode.Here,for the first time,we roll up the Ti3 C2 Tx sheets into scrolls with unclosed topological structure and the interlayer galleries to alleviate the restacking problem.Thus,Ti3 C2 Tx scrolls as anode materials in lithium-ion batteries(LIBs)have higher capacity and better rate performance than Ti3 C2 Tx sheets.On the bases of these,high-capacity silicon nanoparticles are added during the rolling process to in-situ produce Ti3 C2 Tx/Si composite scrolls.The addition of 10%silicon nanoparticles shows the best overall improvement among capacity,rate capability and cyclic stability for Ti3 C2 Tx scrolls.展开更多
The rapid development of next-generation flexible electronics stimulates the growing demand for flexible and wearable power sources with high energy density.Li metal capacitor(LMC),combining with a Li metal anode and ...The rapid development of next-generation flexible electronics stimulates the growing demand for flexible and wearable power sources with high energy density.Li metal capacitor(LMC),combining with a Li metal anode and an activated carbon cathode,exhibits extremely high energy density and high power density due to the unique energy storage mechanism,thus showing great potential for powering wearable electronic devices.Herein,a flexible LMC based on an in situ prepared PETEA-based gel polymer electrolyte(GPE)was reported for the first time.Owing to the high ionic conductivity of PETEA-based GPE(5.75×10^(−3)S/cm at 20℃),the assembled flexible LMC delivers a high capacitance of 210 F/g at 0.1 A/g within the voltage range from 1.5 V to 4.3 V vs.Li/Li^(+),a high energy density of 474 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g.More importantly,PETEA-based GPE endows the LMC with excellent flexibility and safety,which could work normally under abuse tests,such as bending,nail penetration and cutting.The in situ prepared PETEA-based GPE simplifies the fabrication process,avoids the risk of leakage and inhibits the growth of Li dendrite,making LMC a promising flexible energy storage device for the flexible electronic field.展开更多
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch...The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.展开更多
We construct the Hall-bar device with the size of several hundred nanometers based on the HZO/Co multiferroic heterojunction. A remarkable voltage-controlled magnetism is observed in the device that possesses both fer...We construct the Hall-bar device with the size of several hundred nanometers based on the HZO/Co multiferroic heterojunction. A remarkable voltage-controlled magnetism is observed in the device that possesses both ferroelectric property and perpendicular magnetic anisotropy(PMA). The nucleation field and coercivity can be modulated by voltage pulse while saturation field keeps stable. The non-volatile and reversible voltage-controlled magnetism is ascribable to interfacial charges caused by ferroelectric polarization. Meanwhile, the effective anisotropy energy density(Ku) can also be controlled by voltage pulse, a decrease of 83% and increase of 28% in Kuare realized under-3-V and 3-V pulses,respectively. Because the energy barrier is directly proportional to Ku under a given volume, a decreased or enhanced energy barrier can be controlled by voltage pulse. Thus, it is an effective method to realize low-power and high-stability magneto-resistive random-access memory(MRAM).展开更多
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.
基金support by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(AMGM2021A03)the"Special Lubrication and Sealing for Aerospace"Shaanxi Provincial Science and Technology Innovation Team(2024RS-CXTD-63)+1 种基金the Xianyang2023 Key Research and Development Plan(L2023-ZDYF-QYCX-009)the World First Class University and First Class Academic Discipline Construction Funding 2023(0604024GH0201332,0604024SH0201332).
文摘Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and cost-effectiveness is paramount.By leveraging paper for its sustainability,biocompatibility,and inherent porous structure,herein,a solution-processed all-paper resistive pressure sensor is designed with outstanding performance.A ternary composite paste,comprising a compressible 3D carbon skeleton,conductive polymer poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate),and cohesive carbon nanotubes,is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro-and nano-structured surface.Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper,this creates a multiscale hierarchical contact interface between electrodes,significantly enhancing sensitivity(1014 kPa-1)and expanding the detection range(up to 300 kPa)of as-resulted all-paper pressure sensor with low detection limit and power consumption.Its versatility ranges from subtle wrist pulses,robust finger taps,to large-area spatial force detection,highlighting its intricate submillimetermicrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode.Ultimately,this all-paper resistive pressure sensor,with its superior sensing capabilities,large-scale fabrication potential,and cost-effectiveness,paves the way for next-generation wearable electronics,ushering in an era of advanced,sustainable technological solutions.
基金supported by the National Natural Science Foundation of China(Grant No.21573265,21673263,and 21805291)One-Three-Five Strategic Planning of Chinese Academy of Sciences and the DNL Cooperation Fund,CAS(DNL180307)。
文摘Although Ti3 C2 MXene sheets have attracted extensive attention in lithium-ion storage techniques,their restacking makes against and even hinders the Li ions diffusion within them,thereby decreasing the capacity as well as rate performance of conventional MXene anode.Here,for the first time,we roll up the Ti3 C2 Tx sheets into scrolls with unclosed topological structure and the interlayer galleries to alleviate the restacking problem.Thus,Ti3 C2 Tx scrolls as anode materials in lithium-ion batteries(LIBs)have higher capacity and better rate performance than Ti3 C2 Tx sheets.On the bases of these,high-capacity silicon nanoparticles are added during the rolling process to in-situ produce Ti3 C2 Tx/Si composite scrolls.The addition of 10%silicon nanoparticles shows the best overall improvement among capacity,rate capability and cyclic stability for Ti3 C2 Tx scrolls.
基金the financial support from the Natural Science Foundation of Gansu(No.20JR10RA611)the Fundamental Research Funds for the Central Universities(Nos.Lzujbky-2017-178 and lzujbky-2017-181).
文摘The rapid development of next-generation flexible electronics stimulates the growing demand for flexible and wearable power sources with high energy density.Li metal capacitor(LMC),combining with a Li metal anode and an activated carbon cathode,exhibits extremely high energy density and high power density due to the unique energy storage mechanism,thus showing great potential for powering wearable electronic devices.Herein,a flexible LMC based on an in situ prepared PETEA-based gel polymer electrolyte(GPE)was reported for the first time.Owing to the high ionic conductivity of PETEA-based GPE(5.75×10^(−3)S/cm at 20℃),the assembled flexible LMC delivers a high capacitance of 210 F/g at 0.1 A/g within the voltage range from 1.5 V to 4.3 V vs.Li/Li^(+),a high energy density of 474 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g.More importantly,PETEA-based GPE endows the LMC with excellent flexibility and safety,which could work normally under abuse tests,such as bending,nail penetration and cutting.The in situ prepared PETEA-based GPE simplifies the fabrication process,avoids the risk of leakage and inhibits the growth of Li dendrite,making LMC a promising flexible energy storage device for the flexible electronic field.
文摘The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA18000000)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015097)Guangzhou City Research and Development Program in Key Fields (Grant No. 202103020001)。
文摘We construct the Hall-bar device with the size of several hundred nanometers based on the HZO/Co multiferroic heterojunction. A remarkable voltage-controlled magnetism is observed in the device that possesses both ferroelectric property and perpendicular magnetic anisotropy(PMA). The nucleation field and coercivity can be modulated by voltage pulse while saturation field keeps stable. The non-volatile and reversible voltage-controlled magnetism is ascribable to interfacial charges caused by ferroelectric polarization. Meanwhile, the effective anisotropy energy density(Ku) can also be controlled by voltage pulse, a decrease of 83% and increase of 28% in Kuare realized under-3-V and 3-V pulses,respectively. Because the energy barrier is directly proportional to Ku under a given volume, a decreased or enhanced energy barrier can be controlled by voltage pulse. Thus, it is an effective method to realize low-power and high-stability magneto-resistive random-access memory(MRAM).