The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this p...One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this process often relies on human experience and judgment,which will introduce subjectivity and error.In this paper,an intelligent approach is proposed for matching EIS data to their equivalent circuits based on the Random Forest algorithm.It can automatically select the most suitable equivalent circuit model based on the characteristics and patterns of EIS data.Addressing the typical scenario of metal corrosion,an atmospheric corrosion EIS dataset of low-carbon steel is constructed in this paper,which includes five different corrosion scenarios.This dataset was used to validate and evaluate the pro-posed method in this paper.The contributions of this paper can be summarized in three aspects:(1)This paper proposes a method for selecting equivalent circuit models for EIS data based on the Random Forest algorithm.(2)Using authentic EIS data collected from metal atmospheric corrosion,the paper es-tablishes a dataset encompassing five categories of metal corrosion scenarios.(3)The superiority of the proposed method is validated through the utilization of the established authentic EIS dataset.The ex-periment results demonstrate that,in terms of equivalent circuit matching,this method surpasses other machine learning algorithms in both precision and robustness.Furthermore,it shows strong applicability in the analysis of EIS data.展开更多
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
基金support of the project from the National Key R&D Program of China,Research and Application of Sensing System for Cross-regional Complex Oil&Gas Pipeline Network Safe and Efficiency Operational Status Monitoring(Grant No.2022YFB3207603).
文摘One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this process often relies on human experience and judgment,which will introduce subjectivity and error.In this paper,an intelligent approach is proposed for matching EIS data to their equivalent circuits based on the Random Forest algorithm.It can automatically select the most suitable equivalent circuit model based on the characteristics and patterns of EIS data.Addressing the typical scenario of metal corrosion,an atmospheric corrosion EIS dataset of low-carbon steel is constructed in this paper,which includes five different corrosion scenarios.This dataset was used to validate and evaluate the pro-posed method in this paper.The contributions of this paper can be summarized in three aspects:(1)This paper proposes a method for selecting equivalent circuit models for EIS data based on the Random Forest algorithm.(2)Using authentic EIS data collected from metal atmospheric corrosion,the paper es-tablishes a dataset encompassing five categories of metal corrosion scenarios.(3)The superiority of the proposed method is validated through the utilization of the established authentic EIS dataset.The ex-periment results demonstrate that,in terms of equivalent circuit matching,this method surpasses other machine learning algorithms in both precision and robustness.Furthermore,it shows strong applicability in the analysis of EIS data.