期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of nonlinear modeling methods for the composite rubber clamp
1
作者 Yiming CAO Hui MA +4 位作者 Xumin GUO bingfeng zhao Hui LI Xin WANG Bing WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期763-778,共16页
The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.B... The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.By fitting the identified nonlinear coefficients under different excitation amplitudes,the nonlinear vibration responses of the system are predicted.The results show that the accuracy of the BWM is higher than that of the CSFM,especially in the non-resonant region.However,the optimization time of the BWM is longer than that of the CSFM. 展开更多
关键词 pipeline system nonlinear clamp model composite rubber clamp amplitude-dependent characteristic vibration response experiment
在线阅读 下载PDF
Structure,thermal and microwave dielectric properties of coldsintered Li_(2)MoO_(4)-Al_(2)O_(3) ceramic
2
作者 Naichao Chen Jin Cheng +6 位作者 Xinwei Xu Hongye Wang Xiaoyu Li Zhan Zeng bingfeng zhao Mingzhao Xu Hong Wang 《Journal of Materiomics》 2025年第4期99-110,共12页
Dielectric ceramics are essential components in communication systems that operate within the microwave frequency range.In high-density packages,dielectric substrates ceramics must possess high thermal conductivity to... Dielectric ceramics are essential components in communication systems that operate within the microwave frequency range.In high-density packages,dielectric substrates ceramics must possess high thermal conductivity to efficiently dissipate heat.However,achieving adequate thermal conductivity(k)in ceramics sintered at low temperatures is challenging.In this study,we employed the cold sintering process(CSP)to fabricate Li_(2)MoO_(4)-x%Al_(2)O_(3)(0≤x≤80,in volume)ceramics under 200 MPa pressure at 150℃.The Li_(2)MoO_(4)-40%Al_(2)O_(3)composite exhibited significantly enhanced k of 5.4 W·m^(-1)·K^(-1),an 80%increase compared to pure Li_(2)MoO_(4)ceramic with k of 3 W·m^(-1)·K^(-1).At 40%Al_(2)O_(3)content,the Li_(2)MoO_(4)eAl_(2)O_(3)ceramic demonstrated notable microwave properties(ε~6.67,Q×f~17,846 GHz,tf~^(-1)05×10^(-6)℃^(-1)).Additionally,simulation of a microstrip patch antenna for 5 GHz applications using Li_(2)MoO_(4)-20%Al_(2)O_(3)ceramic as dielectric substrate via Finite Element Simulation software showed excellent performance,with radiation efficiency exceeding 99%and low return loss(S_(11)<-30 dB)at both 4.9 GHz and 28.0 GHz center frequencies.These findings underscore the suitability of Li_(2)MoO_(4)eAl_(2)O_(3)ceramics for microwave dielectric substrate. 展开更多
关键词 Microwave dielectric ceramic Thermal conductivity Cold sintering process ANTENNA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部