期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hydrothermal temperature-dependent compositions and copper complexing behaviors of hydrochar-derived dissolved organic matter: Insights from FT-ICR MS and multi-spectroscopic analysis 被引量:1
1
作者 bingfa chen Xincai Gu +6 位作者 Muhua Feng Yanfang Feng Bingyu Wang Bensheng You Jingcheng Zheng Hong Liu Shiqun Han 《Journal of Environmental Sciences》 2025年第6期685-700,共16页
The copper complexing of dissolved organic matter released from hydrochar(HDOM)affects the former’s environmental behavior.In this study,how hydrothermal temperatures(180,220 and 260℃)influence the molecular-level c... The copper complexing of dissolved organic matter released from hydrochar(HDOM)affects the former’s environmental behavior.In this study,how hydrothermal temperatures(180,220 and 260℃)influence the molecular-level constitutions and Cu(II)binding features of HDOM were elucidated via fourier transform ion cyclotron resonance mass spectrometry and multi-spectroscopic analysis.The findings demonstrated that the almost HDOM molecules had the traits of lower polarity and higher hydrophobicity.As the hydrothermal temperature increased,the molecules with particularly high relative strength gradually disappeared,average molecular weight,percentages of CHON and aliphatic compounds of HDOM reduced while the percentages of CHO and aromatic compounds increased.In general,the fluorescence quenching of Cu(II)weakened as hydrothermal temperature rose and the Cu(II)binding stability constants of fluorophores in HDOM were 4.50–5.31.In addition,the Cu(II) binding order of fluorophores in HDOM showed temperature heterogeneities, andpolysaccharides or aromatic rings of non-fluorescent substances had the fastest responsesto Cu(II) binding. Generally, fluorescent components tend to bind Cu(II) at relatively traceconcentrations (0–40 μmol/L), whereas non-fluorescent substances tend to the bind Cu(II)at relatively higher concentrations (50–100 μmol/L). This study contributed to the predictionof the potential environmental behaviors and risks of Cu(II) at the molecular level afterhydrochar application. 展开更多
关键词 Hydrochar Dissolved organic matter Molecular characterizations Cu(II)binding Two-dimensional correlation analysis(2D-COS)
原文传递
The impact of the accumulation of algal blooms on reed wetlands in the littoral zones of Chaohu Lake 被引量:1
2
作者 Shuzhan MA Yue WU +5 位作者 Siwen chen bingfa chen cheng LIU Xiaozhi GU Xiaoli SHI Kaining chen 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第5期1750-1763,共14页
In a large eutrophic lake,the littoral zone is normally an area with high-density elevated aquatic plant life,including algal blooms,where the presence of reed wetlands allows the accumulation of algae.In this study,t... In a large eutrophic lake,the littoral zone is normally an area with high-density elevated aquatic plant life,including algal blooms,where the presence of reed wetlands allows the accumulation of algae.In this study,the impact of accumulated algal blooms in reed wetlands in the littoral zone s of Chaohu Lake was investigated seasonally from 2018 to 2019.The concentrations of chlorophyll a(Chl a),total nitrogen(TN),and total phosphorus(TP)were much higher in the reed-covered littoral zones(RCLZ)than in the unvegetated littoral zones(ULZ),indicating that more algal biomass was trapped and accumulated in the RCLZ.Algal biomass could be horizontally transported to downwind littoral zones under low wind speeds,favoring the establishment of blooms.Algal accumulation levels were highest in summer due to high water temperatures and algal biomasses.Likewise,the northern littoral zones were conducive to the development of large algal blooms because of the wind pattern.The values of TN,TP,Chl a,and loss on ignition in surface sediments were higher in the RCLZ than in the ULZ.Moreover,the diffusive fluxes of ammonium and soluble reactive pho sphorus were also higher in the RCLZ than in the ULZ.Considering the capability of reed wetlands to trap algae,mechanical salvage and other physical methods should be adopted to eliminate algal biomass when massive blooms accumulate in the RCLZ. 展开更多
关键词 Chaohu Lake littoral zone reed wetlands algal blooms
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部