Autophagy is a "self-degradative" process and is involved in the maintenance of cellular homeostasis and the control of cellular components by facilitating the clearance or turnover of long-lived or misfolde...Autophagy is a "self-degradative" process and is involved in the maintenance of cellular homeostasis and the control of cellular components by facilitating the clearance or turnover of long-lived or misfolded proteins, protein aggregates, and damaged organelles. Autophagy plays a dual role in cancer, including in tumor progression and tumor promotion, suggesting that autophagy acts as a double-edged sword in cancer cells. Liver cancer is one of the greatest leading causes of cancer death worldwide due to its high recurrence rate and poor prognosis. Especially in China, liver cancer has become one of the most common cancers due to the high infection rate of hepatitis virus. In primary liver cancer, hepatocellular carcinoma (HCC) is the most common type. Considering the perniciousness and complexity of HCC, it is essential to elucidate the function of autophagy in HCC. In this review, we summarize the physiological function of autophagy in cancer, analyze the role of autophagy in tumorigenesis and metastasis, discuss the therapeutic strategies targeting autophagy and the mechanisms of drug-resistance in HCC, and provide potential methods to circumvent resistance and combined anticancer strategies for HCC patients.展开更多
The oxygen evolution reaction(OER) with slow kinetics is the rate-limiting step of electrochemical water splitting.A reasonable construction of interface nanostructures is the key to improving the OER efficiency and d...The oxygen evolution reaction(OER) with slow kinetics is the rate-limiting step of electrochemical water splitting.A reasonable construction of interface nanostructures is the key to improving the OER efficiency and durability of non-noble metal electrocatalysts.In this study,a FeOOH/NiCo_(2)S_(4) core-shell nanorod array with abundant heterogeneous interfaces and high density of active sites was successfully prepared by a microwave-as sis ted method.Experimental research and theoretical calculations show that the abundant strong coupling Ni/Co-S-Fe interface helps in adjusting the electronic structure of the material surface,optimizing the adsorption energy of the intermediate,and realizing an efficient catalytic process.The as-synthesized FeOOH/NiCo_(2)S_(4)/NF composite electrode exhibited lower overpotential(198 mV) and Tafel slope(62 mV·dec^(-1)) at a current density of 10 mA·cm^(-2)and excellent stability(approximately 100% retention after100 h) than the NiCo_(2)S_(4)/nickel foam(NF).In conclusion,constructing heterojunctions with complementary active materials is an effective strategy to design efficient and robust OER electrocatalysts.展开更多
基金Supported by Natural Science Foundation of China,No.81803069Natural Science Foundation of Zhejiang Province of China,No.LY18C070002 and No.LY16H160056521 Talent Project of Zhejiang Sci-Tech University
文摘Autophagy is a "self-degradative" process and is involved in the maintenance of cellular homeostasis and the control of cellular components by facilitating the clearance or turnover of long-lived or misfolded proteins, protein aggregates, and damaged organelles. Autophagy plays a dual role in cancer, including in tumor progression and tumor promotion, suggesting that autophagy acts as a double-edged sword in cancer cells. Liver cancer is one of the greatest leading causes of cancer death worldwide due to its high recurrence rate and poor prognosis. Especially in China, liver cancer has become one of the most common cancers due to the high infection rate of hepatitis virus. In primary liver cancer, hepatocellular carcinoma (HCC) is the most common type. Considering the perniciousness and complexity of HCC, it is essential to elucidate the function of autophagy in HCC. In this review, we summarize the physiological function of autophagy in cancer, analyze the role of autophagy in tumorigenesis and metastasis, discuss the therapeutic strategies targeting autophagy and the mechanisms of drug-resistance in HCC, and provide potential methods to circumvent resistance and combined anticancer strategies for HCC patients.
基金financially supported by Hainan Province Clinical Medical Center,the National Natural Science Foundation of China (Nos.81860373,51862006,81902154 and 82060386)Hainan Province Science and Technology Special Fund (Nos.ZDKJ2021029 and ZDYF2021SHFZ068)。
文摘The oxygen evolution reaction(OER) with slow kinetics is the rate-limiting step of electrochemical water splitting.A reasonable construction of interface nanostructures is the key to improving the OER efficiency and durability of non-noble metal electrocatalysts.In this study,a FeOOH/NiCo_(2)S_(4) core-shell nanorod array with abundant heterogeneous interfaces and high density of active sites was successfully prepared by a microwave-as sis ted method.Experimental research and theoretical calculations show that the abundant strong coupling Ni/Co-S-Fe interface helps in adjusting the electronic structure of the material surface,optimizing the adsorption energy of the intermediate,and realizing an efficient catalytic process.The as-synthesized FeOOH/NiCo_(2)S_(4)/NF composite electrode exhibited lower overpotential(198 mV) and Tafel slope(62 mV·dec^(-1)) at a current density of 10 mA·cm^(-2)and excellent stability(approximately 100% retention after100 h) than the NiCo_(2)S_(4)/nickel foam(NF).In conclusion,constructing heterojunctions with complementary active materials is an effective strategy to design efficient and robust OER electrocatalysts.