Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,wi...Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.展开更多
Scientific knowledge on the chemical compositions of fine particulate matter(PM_(2.5)) is essential for properly assessing its health and climate effects,and for decisionmakers to develop efficient mitigation strategi...Scientific knowledge on the chemical compositions of fine particulate matter(PM_(2.5)) is essential for properly assessing its health and climate effects,and for decisionmakers to develop efficient mitigation strategies.A high-resolution PM_(2.5) chemical composition dataset(CAQRA-aerosol)is developed in this study,which provides hourly maps of organic carbon,black carbon,ammonium,nitrate,and sulfate in China from 2013 to 2020 with a horizontal resolution of 15 km.This paper describes the method,access,and validation results of this dataset.It shows that CAQRA-aerosol has good consistency with observations and achieves higher or comparable accuracy with previous PM_(2.5) composition datasets.Based on CAQRA-aerosol,spatiotemporal changes of different PM_(2.5) compositions were investigated from a national viewpoint,which emphasizes different changes of nitrate from other compositions.The estimated annual rate of population-weighted concentrations of nitrate is 0.23μg m^(−3)yr^(−1) from 2015 to 2020,compared with−0.19 to−1.1μg m^(−3)yr^(−1) for other compositions.The whole dataset is freely available from the China Air Pollution Data Center(https://doi.org/10.12423/capdb_PKU.2023.DA).展开更多
The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the...The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the sequence stratigraphy and sedimentary facies of the Kaijiang-Liangping area are studied. Four sequence boundaries and three maximum flooding surfaces of the Feixianguan formation are detected in this area. Three third-order sequences are identified as first sequence (SQ1), the second sequence (SQ2), and the third sequence (SQ3) in which SQ1 corresponds to the member 1 of the Feixianguan formation, SQ2 corresponds to the member 2, and SQ3 corresponds to the member 3 and member 4. Member 1, 2, 3 and 4 are lithologic sections divided by predecessors. On the basis of this sequence division and their sedimentary marks, the facies of the Feixianguan formation can be divided into open platform and evaporate platform categories. The open platform is composed of three subfacies identified as platform bank or basin marginal bank, interbank, and platform basin. Thus, a sedimentary evolution model is established. According to the sedimentary and seismic characteristics of the Kaijiang-Liangping area, we determine that two oolitic bank models, the aggradation model and the progradation model, are developed in this area. The aggradation model is developed in the Longgang region, which includes the basin marginal bank as a favorable exploring zone. The progradation model is developed in the Jiulongshan and Longhui areas, besides the basin marginal bank, the favorable exploration zones also include the oolitic bank developing areas of the inner basin.展开更多
Tumor cell-intrinsic programmed death-ligand 1(PD-L1)signals mediate tumor initiation,progression and metastasis,but their effects in ameloblastoma(AM)have not been reported.In this comprehensive study,we observed mar...Tumor cell-intrinsic programmed death-ligand 1(PD-L1)signals mediate tumor initiation,progression and metastasis,but their effects in ameloblastoma(AM)have not been reported.In this comprehensive study,we observed marked upregulation of PD-L1 in AM tissues and revealed the robust correlation between elevated PD-L1 expression and increased tumor growth and recurrence rates.Notably,we found that PD-L1 overexpression markedly increased self-renewal capacity and promoted tumorigenic processes and invasion in hTERT^(+)-AM cells,whereas genetic ablation of PD-L1 exerted opposing inhibitory effects.By performing highresolution single-cell profiling and thorough immunohistochemical analyses in AM patients,we delineated the intricate cellular landscape and elucidated the mechanisms underlying the aggressive phenotype and unfavorable prognosis of these tumors.Our findings revealed that hTERT^(+)-AM cells with upregulated PD-L1 expression exhibit increased proliferative potential and stem-like attributes and undergo partial epithelial-mesenchymal transition.This phenotypic shift is induced by the activation of the PI3KAKT-mTOR signaling axis;thus,this study revealed a crucial regulatory mechanism that fuels tumor growth and recurrence.Importantly,targeted inhibition of the PD-L1-PI3K-AKT-mTOR signaling axis significantly suppressed the growth of AM patientderived tumor organoids,highlighting the potential of PD-L1 blockade as a promising therapeutic approach for AM.展开更多
In recent years,gratitude intervention,as an application method of positive psychology,has gradually attracted the attention of researchers.Gratitude intervention is considered to be an effective psychological interve...In recent years,gratitude intervention,as an application method of positive psychology,has gradually attracted the attention of researchers.Gratitude intervention is considered to be an effective psychological intervention,especially in patients with malignant tumors.This study reviews the research progress of gratitude intervention in patients with malignant tumors,focusing on the mechanism,implementation methods,effect evaluation and challenges in clinical application of gratitude intervention,in the hope of providing a theoretical support and practical guideline for future research and practice.展开更多
BACKGROUND Insomnia is a common sleep disorder that negatively impacts quality of life and is frequently comorbid with depression and anxiety.Chronic insomnia affects approximately 15%of the global population,with hig...BACKGROUND Insomnia is a common sleep disorder that negatively impacts quality of life and is frequently comorbid with depression and anxiety.Chronic insomnia affects approximately 15%of the global population,with higher prevalence among females and the elderly.While existing research suggests a bidirectional relationship between insomnia and emotional disorders,the specific impact of insomnia severity on depression,anxiety,and quality of life remains unclear.This study investigates the correlation between insomnia severity and these factors in psychiatric outpatients,hypothesizing that greater insomnia severity is associated with higher levels of depression and anxiety,as well as poorer quality of life.AIM To explore the correlation between insomnia severity and depression,anxiety,and quality of life in primary chronic insomnia patients.METHODS From June to December 2023,345 patients with primary insomnia in Chifeng city were recruited and divided into three groups based on Pittsburgh sleep quality index(PSQI)scores:Mild(n=137),moderate(n=162),and severe(n=46).Demographic data were collected via questionnaires.Self-rating depression scale(SDS),self-rating anxiety scale(SAS),PSQI,and short form 36(SF-36)scores were compared,and Pearson and partial correlation analyses were performed.RESULTS The greater the degree of insomnia,the greater the symptoms of depression and anxiety(P<0.001).The more severe the insomnia,the lower the SF-36 score(excluding body pain),and the difference between the three groups was statist ically significant(P<0.001).Pearson correlation analysis and partial correlation analysis depicted the SDS score and SAS score were apparently positively correlated with the severity of insomnia(P<0.001).Pearson correlation analysis and partial correlation analysis depicted the SF-36 scores were apparently positively correlated with the severity of insomnia(P<0.05).CONCLUSION Depression and anxiety are independent factors influencing insomnia severity in primary chronic insomnia patients.Higher depression/anxiety levels correlate with worse insomnia,impacting quality of life.展开更多
In this paper,we report the design of ultrafine ordered PtFeZn ternary intermetallics uniformly supported on ZIF-8-derived Zn,N-codoped graphitic carbon(ZnNC)via a green aqueous impregnation method followed by a two-s...In this paper,we report the design of ultrafine ordered PtFeZn ternary intermetallics uniformly supported on ZIF-8-derived Zn,N-codoped graphitic carbon(ZnNC)via a green aqueous impregnation method followed by a two-step annealing protocol(H_(2)/Ar,600 and 800℃)to circumvent the sintering issues imposed by conventional thermodynamics.Physical characterizations(X-ray diffraction,high-angle annular dark-field scanning transmission electron microscopy,X-ray absorption spectroscopy)and theoretical calculations reveal that low-temperature annealing at 600℃stabilizes sub-nano disordered PtFe alloys via the strong metal-support interactions(SMSI)between Zn in ZnNC and Pt precursors,while high-temperature treatment at 800℃promotes Zn diffusion from the support into the alloy bulk and simultaneously triggers the disorder-to-order phase transition.The as-prepared ZnNC-15PtFeZn exhibits an initial mass activity of 0.769 mA/μgPt and retains 61.7%of its activity after 30000 cycles of accelerated stress testing(AST).Notably,when used as a cathode catalyst in MEA,ZnNC-15PtFeZn achieves superior power density(2.018 W/cm^(2)under H_(2)-O_(2))at half the Pt loading(0.05 mg/cm^(2))of state-of-the-art commercial Pt/C,highlighting its potential for low-Pt PEMFCs.Density functional theory confirms that Fe enhances ORR activity via ligand effects,while Zn strengthens Pt-Fe/Zn bonding(elevating vacancy formation energies),thereby improving structural stability.This mild,scalable aqueous impregnation strategy offers a general approach for synthesizing multi-component ordered alloys in electrocatalysis.展开更多
The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of...The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion.展开更多
Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targ...Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.展开更多
Background Systemic inflammatory responses and oxidative stress occur in laying hens during the aging process,particularly during the post-peaking laying period,which generally result in multi-organ damages,leading to...Background Systemic inflammatory responses and oxidative stress occur in laying hens during the aging process,particularly during the post-peaking laying period,which generally result in multi-organ damages,leading to significant declines in egg performance and quality.Chlorogenic acid(CGA)-enriched extract from Eucommia ulmoides leaves has anti-inflammatory and antioxidant activities.However,the mechanisms underlying whether and how CGA alleviates systemic inflammatory responses and oxidative stress to improve egg performance and quality in postpeaking laying hens remain unclear.In this study,the potential regulatory mechanisms of CGA in alleviating inflammatory responses and oxidative stress along the gut-liver axis were investigated.A total of 36055-week-old Hy-line white-laying hens were randomly selected and divided into four groups.The hens in the four groups were fed a basal diet(CON)or basal diets supplemented with 200,400,and 800 mg/kg of CGA(CGA200,CGA400,and CGA800,respectively)for 10 weeks.Results The results demonstrated that CGA significantly alleviated intestinal and hepatic damages resulting from systemic inflammatory responses and oxidative stress,thereby improving the laying performance and egg quality of post-peaking laying hens.CGA reduced systemic inflammation by improving intestinal barrier function and modulating inflammation-associated microbiota(Blautia and Megamonas),thus inhibiting endotoxin translocation.CGA can also reduce oxidative stress by upregulating the NRF-2 pathway-related genes and increasing antioxidant enzyme activities in the liver.The results of transcriptome sequencing revealed that CGA promoted lipid metabolism by regulating hepatic adipocytokine pathway-related genes/protein and reduced the inflammatory responses and apoptosis in liver by regulating PI3K/AKT pathway-related genes/proteins,which was also verified by qPCR and western blotting.Conclusion CGA alleviated multi-organ damages and dysfunction by suppressing the systemic inflammatory responses and oxidative stress in post-peaking laying hens,thereby improving egg performance and quality.The optimal dose of CGA is 400 mg/kg in this experiment.These results provide a sound theoretical basis for the application of CGA as an exogenous animal feed additive for laying hens.展开更多
Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;howev...Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;however,achieving ultrahigh precision and ultralow damage machining of functional devices using traditional techniques such as grinding and polishing is extremely challenging.Consequently,nanocutting has emerged as an efficient means to fabricate monocrystalline materials with complex surface characteristics and high surface integrity.Nevertheless,the macroscopic cutting theory of metal materials cannot be applied to nanocutting.Accordingly,in this paper,both simulations and experiments were conducted to examine the chip deformation mechanisms of monocrystalline Cu.First,large-scale molecular dynamics(MD)simulations were conducted to gain a comprehensive understanding of the deformation behavior during nanocutting.This included examining the influencing factors and the variation patterns of the chip deformation coefficient,cutting force,and minimum cutting thickness.Subsequently,nanocutting experiments were performed using a specially designed nanocutting platform with high-resolution online observation by scanning electron microscopy.The experimental results served to verify the accuracy and reliability of theMDmodeling,as they exhibited excellent consistency with the simulated results.Although this work considered monocrystalline Cu,it is believed that the elucidated chip deformation mechanisms could also be applied to other face-centered-cubic metals.These results are of great value for advancing the understanding of the mechanisms of ultraprecision cutting.展开更多
基金financially supported by the Hainan Province Science and Technology Special Fund(Grant no:ZDYF2024XDNY187).
文摘Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.
基金support from the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)sponsored by the National Natural Science Foundation of China (Grant Nos. 42175132, 92044303, and 42205119)+2 种基金the National Key R&D Program (Grant Nos. 2020YFA0607802 and 2022YFC3703003)the CAS Information Technology Program (Grant No. CAS-WX2021SF-0107-02)the fellowship of China Postdoctoral Science Foundation (Grant No. 2022M723093)
文摘Scientific knowledge on the chemical compositions of fine particulate matter(PM_(2.5)) is essential for properly assessing its health and climate effects,and for decisionmakers to develop efficient mitigation strategies.A high-resolution PM_(2.5) chemical composition dataset(CAQRA-aerosol)is developed in this study,which provides hourly maps of organic carbon,black carbon,ammonium,nitrate,and sulfate in China from 2013 to 2020 with a horizontal resolution of 15 km.This paper describes the method,access,and validation results of this dataset.It shows that CAQRA-aerosol has good consistency with observations and achieves higher or comparable accuracy with previous PM_(2.5) composition datasets.Based on CAQRA-aerosol,spatiotemporal changes of different PM_(2.5) compositions were investigated from a national viewpoint,which emphasizes different changes of nitrate from other compositions.The estimated annual rate of population-weighted concentrations of nitrate is 0.23μg m^(−3)yr^(−1) from 2015 to 2020,compared with−0.19 to−1.1μg m^(−3)yr^(−1) for other compositions.The whole dataset is freely available from the China Air Pollution Data Center(https://doi.org/10.12423/capdb_PKU.2023.DA).
文摘The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the sequence stratigraphy and sedimentary facies of the Kaijiang-Liangping area are studied. Four sequence boundaries and three maximum flooding surfaces of the Feixianguan formation are detected in this area. Three third-order sequences are identified as first sequence (SQ1), the second sequence (SQ2), and the third sequence (SQ3) in which SQ1 corresponds to the member 1 of the Feixianguan formation, SQ2 corresponds to the member 2, and SQ3 corresponds to the member 3 and member 4. Member 1, 2, 3 and 4 are lithologic sections divided by predecessors. On the basis of this sequence division and their sedimentary marks, the facies of the Feixianguan formation can be divided into open platform and evaporate platform categories. The open platform is composed of three subfacies identified as platform bank or basin marginal bank, interbank, and platform basin. Thus, a sedimentary evolution model is established. According to the sedimentary and seismic characteristics of the Kaijiang-Liangping area, we determine that two oolitic bank models, the aggradation model and the progradation model, are developed in this area. The aggradation model is developed in the Longgang region, which includes the basin marginal bank as a favorable exploring zone. The progradation model is developed in the Jiulongshan and Longhui areas, besides the basin marginal bank, the favorable exploration zones also include the oolitic bank developing areas of the inner basin.
基金supported by the postdoctoral fellowship program of CPSF(GZC20241270)the China Postdoctoral Science Foundation(2024M762496).
文摘Tumor cell-intrinsic programmed death-ligand 1(PD-L1)signals mediate tumor initiation,progression and metastasis,but their effects in ameloblastoma(AM)have not been reported.In this comprehensive study,we observed marked upregulation of PD-L1 in AM tissues and revealed the robust correlation between elevated PD-L1 expression and increased tumor growth and recurrence rates.Notably,we found that PD-L1 overexpression markedly increased self-renewal capacity and promoted tumorigenic processes and invasion in hTERT^(+)-AM cells,whereas genetic ablation of PD-L1 exerted opposing inhibitory effects.By performing highresolution single-cell profiling and thorough immunohistochemical analyses in AM patients,we delineated the intricate cellular landscape and elucidated the mechanisms underlying the aggressive phenotype and unfavorable prognosis of these tumors.Our findings revealed that hTERT^(+)-AM cells with upregulated PD-L1 expression exhibit increased proliferative potential and stem-like attributes and undergo partial epithelial-mesenchymal transition.This phenotypic shift is induced by the activation of the PI3KAKT-mTOR signaling axis;thus,this study revealed a crucial regulatory mechanism that fuels tumor growth and recurrence.Importantly,targeted inhibition of the PD-L1-PI3K-AKT-mTOR signaling axis significantly suppressed the growth of AM patientderived tumor organoids,highlighting the potential of PD-L1 blockade as a promising therapeutic approach for AM.
基金Supported by the National Natural Science Foundation of China(71774049).
文摘In recent years,gratitude intervention,as an application method of positive psychology,has gradually attracted the attention of researchers.Gratitude intervention is considered to be an effective psychological intervention,especially in patients with malignant tumors.This study reviews the research progress of gratitude intervention in patients with malignant tumors,focusing on the mechanism,implementation methods,effect evaluation and challenges in clinical application of gratitude intervention,in the hope of providing a theoretical support and practical guideline for future research and practice.
文摘BACKGROUND Insomnia is a common sleep disorder that negatively impacts quality of life and is frequently comorbid with depression and anxiety.Chronic insomnia affects approximately 15%of the global population,with higher prevalence among females and the elderly.While existing research suggests a bidirectional relationship between insomnia and emotional disorders,the specific impact of insomnia severity on depression,anxiety,and quality of life remains unclear.This study investigates the correlation between insomnia severity and these factors in psychiatric outpatients,hypothesizing that greater insomnia severity is associated with higher levels of depression and anxiety,as well as poorer quality of life.AIM To explore the correlation between insomnia severity and depression,anxiety,and quality of life in primary chronic insomnia patients.METHODS From June to December 2023,345 patients with primary insomnia in Chifeng city were recruited and divided into three groups based on Pittsburgh sleep quality index(PSQI)scores:Mild(n=137),moderate(n=162),and severe(n=46).Demographic data were collected via questionnaires.Self-rating depression scale(SDS),self-rating anxiety scale(SAS),PSQI,and short form 36(SF-36)scores were compared,and Pearson and partial correlation analyses were performed.RESULTS The greater the degree of insomnia,the greater the symptoms of depression and anxiety(P<0.001).The more severe the insomnia,the lower the SF-36 score(excluding body pain),and the difference between the three groups was statist ically significant(P<0.001).Pearson correlation analysis and partial correlation analysis depicted the SDS score and SAS score were apparently positively correlated with the severity of insomnia(P<0.001).Pearson correlation analysis and partial correlation analysis depicted the SF-36 scores were apparently positively correlated with the severity of insomnia(P<0.05).CONCLUSION Depression and anxiety are independent factors influencing insomnia severity in primary chronic insomnia patients.Higher depression/anxiety levels correlate with worse insomnia,impacting quality of life.
文摘In this paper,we report the design of ultrafine ordered PtFeZn ternary intermetallics uniformly supported on ZIF-8-derived Zn,N-codoped graphitic carbon(ZnNC)via a green aqueous impregnation method followed by a two-step annealing protocol(H_(2)/Ar,600 and 800℃)to circumvent the sintering issues imposed by conventional thermodynamics.Physical characterizations(X-ray diffraction,high-angle annular dark-field scanning transmission electron microscopy,X-ray absorption spectroscopy)and theoretical calculations reveal that low-temperature annealing at 600℃stabilizes sub-nano disordered PtFe alloys via the strong metal-support interactions(SMSI)between Zn in ZnNC and Pt precursors,while high-temperature treatment at 800℃promotes Zn diffusion from the support into the alloy bulk and simultaneously triggers the disorder-to-order phase transition.The as-prepared ZnNC-15PtFeZn exhibits an initial mass activity of 0.769 mA/μgPt and retains 61.7%of its activity after 30000 cycles of accelerated stress testing(AST).Notably,when used as a cathode catalyst in MEA,ZnNC-15PtFeZn achieves superior power density(2.018 W/cm^(2)under H_(2)-O_(2))at half the Pt loading(0.05 mg/cm^(2))of state-of-the-art commercial Pt/C,highlighting its potential for low-Pt PEMFCs.Density functional theory confirms that Fe enhances ORR activity via ligand effects,while Zn strengthens Pt-Fe/Zn bonding(elevating vacancy formation energies),thereby improving structural stability.This mild,scalable aqueous impregnation strategy offers a general approach for synthesizing multi-component ordered alloys in electrocatalysis.
基金supported by the National Natural Science Foundation of China(Nos.52174175 and 52274078)the Program for the Scientific and Technological Innovation Team in Universities of Henan Province(No.23IRTSTHN005)。
文摘The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion.
基金supported by the National Natural Science Foundation of China(No.52200049)the China Postdoctoral Science Foundation(No.2022TQ0089)the Heilongjiang Province Postdoctoral Science Foundation(No.LBHZ22181).
文摘Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.
基金financially supported by the Collaborative Extension Program for Advancements in Agricultural Technologies of Zhejiang Province(Grant no:2023ZDXT15)the Key Research&Development Program of Zhejiang Province(Grant no:2024C02004)Bureau of Science and Technology of Xinchang County Foundation.
文摘Background Systemic inflammatory responses and oxidative stress occur in laying hens during the aging process,particularly during the post-peaking laying period,which generally result in multi-organ damages,leading to significant declines in egg performance and quality.Chlorogenic acid(CGA)-enriched extract from Eucommia ulmoides leaves has anti-inflammatory and antioxidant activities.However,the mechanisms underlying whether and how CGA alleviates systemic inflammatory responses and oxidative stress to improve egg performance and quality in postpeaking laying hens remain unclear.In this study,the potential regulatory mechanisms of CGA in alleviating inflammatory responses and oxidative stress along the gut-liver axis were investigated.A total of 36055-week-old Hy-line white-laying hens were randomly selected and divided into four groups.The hens in the four groups were fed a basal diet(CON)or basal diets supplemented with 200,400,and 800 mg/kg of CGA(CGA200,CGA400,and CGA800,respectively)for 10 weeks.Results The results demonstrated that CGA significantly alleviated intestinal and hepatic damages resulting from systemic inflammatory responses and oxidative stress,thereby improving the laying performance and egg quality of post-peaking laying hens.CGA reduced systemic inflammation by improving intestinal barrier function and modulating inflammation-associated microbiota(Blautia and Megamonas),thus inhibiting endotoxin translocation.CGA can also reduce oxidative stress by upregulating the NRF-2 pathway-related genes and increasing antioxidant enzyme activities in the liver.The results of transcriptome sequencing revealed that CGA promoted lipid metabolism by regulating hepatic adipocytokine pathway-related genes/protein and reduced the inflammatory responses and apoptosis in liver by regulating PI3K/AKT pathway-related genes/proteins,which was also verified by qPCR and western blotting.Conclusion CGA alleviated multi-organ damages and dysfunction by suppressing the systemic inflammatory responses and oxidative stress in post-peaking laying hens,thereby improving egg performance and quality.The optimal dose of CGA is 400 mg/kg in this experiment.These results provide a sound theoretical basis for the application of CGA as an exogenous animal feed additive for laying hens.
基金support of the National Natural Science Foundation of China(Grant No.51805371)the Innovation and Entrepreneurship Training Program of Tianjin University of Commerce(Grant No.202310069067).
文摘Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;however,achieving ultrahigh precision and ultralow damage machining of functional devices using traditional techniques such as grinding and polishing is extremely challenging.Consequently,nanocutting has emerged as an efficient means to fabricate monocrystalline materials with complex surface characteristics and high surface integrity.Nevertheless,the macroscopic cutting theory of metal materials cannot be applied to nanocutting.Accordingly,in this paper,both simulations and experiments were conducted to examine the chip deformation mechanisms of monocrystalline Cu.First,large-scale molecular dynamics(MD)simulations were conducted to gain a comprehensive understanding of the deformation behavior during nanocutting.This included examining the influencing factors and the variation patterns of the chip deformation coefficient,cutting force,and minimum cutting thickness.Subsequently,nanocutting experiments were performed using a specially designed nanocutting platform with high-resolution online observation by scanning electron microscopy.The experimental results served to verify the accuracy and reliability of theMDmodeling,as they exhibited excellent consistency with the simulated results.Although this work considered monocrystalline Cu,it is believed that the elucidated chip deformation mechanisms could also be applied to other face-centered-cubic metals.These results are of great value for advancing the understanding of the mechanisms of ultraprecision cutting.