Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)proce...Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.展开更多
Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density.However,the dissolution of discharge intermediate products to the electrol...Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density.However,the dissolution of discharge intermediate products to the electrolyte,the volume change and poor electric conductivity of sulfur greatly limit their further commercialization.Herein,we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays(TiO2 NTs@Ni)prepared by an anodization and electrodeposition method.The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons.Moreover,the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode.As a result,the TiO2 NTs@Ni-S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs,and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.展开更多
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601904).
文摘Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.
基金The authors acknowledge the financial support from the Natural Science Foundation of Beijing (No. L182062)the Organization Department of Beijing Talents Project (2018000021223ZK21)+2 种基金the Beijing Nova Program (Z171100001117077)the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No. 2014QJ02).
文摘Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density.However,the dissolution of discharge intermediate products to the electrolyte,the volume change and poor electric conductivity of sulfur greatly limit their further commercialization.Herein,we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays(TiO2 NTs@Ni)prepared by an anodization and electrodeposition method.The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons.Moreover,the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode.As a result,the TiO2 NTs@Ni-S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs,and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.