期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Discovery of New Hot Subdwarf Stars in LAMOST DR12
1
作者 Yuhang Zhang Jiangchuan Zhang +11 位作者 Yude Bu Zhenxin Lei beining yang Ke Wang Jingzhen Sun Qinqin Li Siqi Wang Mengmeng Zhang Shanshan Li Zhenping Yi Xiaoming Kong Meng Liu 《Research in Astronomy and Astrophysics》 2025年第10期78-90,共13页
Hot subdwarf stars are important celestial objects in the study of stellar physics,but the population remains limited.The LAMOST DR12-V1,released in 2025 March,is currently the world’s largest spectroscopic database,... Hot subdwarf stars are important celestial objects in the study of stellar physics,but the population remains limited.The LAMOST DR12-V1,released in 2025 March,is currently the world’s largest spectroscopic database,holding great potential for the search of hot subdwarf stars.In this study,we propose a two-stage deep learning model called the hot subdwarf network(HsdNet),which integrates multiple advanced techniques,comprising a binary classification model in stage one and a five-class classification model in stage two.HsdNet not only achieves high precision with 94.33%and 94.00%in the binary and the five-class classification stages,respectively,but also quantifies the predicted uncertainty,enhancing the interpretability of the classification results through visualizing the model’s key focus regions.We applied HsdNet to the 601,217 spectra from the LAMOST DR12-V1 database,conducting a two-stage search for hot subdwarf candidates.In stage one,we initially identified candidates using the binary classification model.In stage two,the five-class classification model was used to further refine these candidates.Finally,we confirmed 1008 newly identified hot subdwarf stars.The distribution of their atmospheric parameters is consistent with that of known hot subdwarf stars.These efforts are expected to significantly advance the research on hot subdwarf stars. 展开更多
关键词 METHODS statistical-techniques spectroscopic-(stars )subdwarfs-methods data analysis
在线阅读 下载PDF
非线性信息瓶颈指导的层次图结构学习方法
2
作者 孙庆赟 罗家逸 +1 位作者 杨贝宁 李建欣 《中国科学:信息科学》 CSCD 北大核心 2024年第10期2409-2427,共19页
近年来,图神经网络在各个领域的图数据挖掘任务上取得了显著的成功,已成为领域的研究热点.图神经网络通过结构传播节点信息,并以此计算节点的表征,在大量应用场景上取得了显著的效果提升.大多数图神经网络模型遵循消息传递机制,直接将... 近年来,图神经网络在各个领域的图数据挖掘任务上取得了显著的成功,已成为领域的研究热点.图神经网络通过结构传播节点信息,并以此计算节点的表征,在大量应用场景上取得了显著的效果提升.大多数图神经网络模型遵循消息传递机制,直接将原始图数据作为输入,假设观测到的图结构准确地描述了节点之间完整的关系.然而,真实场景中图数据的产生往往受多种因素影响,包含大量随机噪声和人为扰动.这些噪声信息和干扰信息在图神经网络信息聚合的过程中随着图结构传播,对图表征质量产生严重的影响.如何度量、识别图数据中的噪声信息,是领域关注的热点问题之一.本文从信息论的角度出发,提出了一种非线性信息瓶颈指导的层次图结构学习方法NIB-HGSL,针对图层级分类任务,为去除结构噪声、学习鲁棒的图表征提供了一个统一通用的框架.NIB-HGSL通过有效信息保留与噪声信息压缩的均衡优化,可以获得对下游任务来说最关键的层次化最小充分图.实验结果表明,本文所提出的NIB-HGSL方法与其他基线方法相比,可提高图分类和图回归任务的准确性和鲁棒性. 展开更多
关键词 图表示学习 信息瓶颈 图结构学习 图神经网络 图分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部