Background:The anti-inflammatory effect of exercise may be an underlying factor in improving several autoimmune diseases.The aim of this systematic review was to examine the evidence on the role of exercise training i...Background:The anti-inflammatory effect of exercise may be an underlying factor in improving several autoimmune diseases.The aim of this systematic review was to examine the evidence on the role of exercise training in mitigating inflammation in adolescents and adults with autoimmune disease.Methods:PubMed,Web of Science,and Embase databases were systematically reviewed for related studies published between January 1,2003,and August 31,2023.All randomized and non-randomized controlled trials of exercise interventions with autoimmune disease study participants that evaluated inflammation-related biomarkers were included.The quality of evidence was assessed using the Tool for the assEssment of Study qualiTy and reporting in EXercise scale and Cochrane bias risk tool.Results:A total of 14,565 records were identified.After screening the titles,abstracts,and full texts,87 were eligible for the systematic review.These studies were conducted in 25 different countries and included a total of 2779 participants(patients with autoimmune disease,in exercise or control groups).Overall,the evidence suggests that inflammation-related markers such as C-reactive protein,interleukin 6,and tumor necrosis factor a were reduced by regular exercise interventions.Regular exercise interventions combined with multiple exercise modes were associated with greater benefits.Conclusion:Regular exercise training by patients with autoimmune disease exerts an anti-inflammatory influence.This systematic review provides support for the promotion and development of clinical exercise intervention programs for patients with autoimmune disease.Most patients with autoimmune disease can safely adopt moderate exercise training protocols,but changes in inflammation biomarkers will be modest at best.Acute exercise interventions are ineffective or even modestly but transiently pro-inflammatory.展开更多
Background:Exercise induces blood flow redistribution among tissues,leading to splanchnic hypoperfusion.Intestinal epithelial cells are positioned between the anaerobic lumen and the highly metabolic lamina propria wi...Background:Exercise induces blood flow redistribution among tissues,leading to splanchnic hypoperfusion.Intestinal epithelial cells are positioned between the anaerobic lumen and the highly metabolic lamina propria with an oxygen gradient.Hypoxia-inducible factor(HIF)-la is pivotal in the transcriptional response to the oxygen flux.Methods:In this study,the pimonidazole hydrochloride staining was applied to observe the tissue hypoxia in different organs,which might be affected by the blood flow redistribution.The HIF-la luciferase reporter ROSA26 oxygen-dependent degradation domain(ODD)-Luc/^+mouse model(ODD domain-Luc;female,n=3-6/group) was used to detect the HIF-la expression in the intestine.We used 3 swimming models:moderate exercise for 30 min,heavy-intensity exercise bearing 5% bodyweight for 1.5 h,and long-time exercise for 3 h.Results:We found that 1 session of swimming at different intensities could induce tissue hypoxia redistribution in the small intestine,colon,liver and kidney,but not in the spleen,heart,and skeletal muscle.Our data showed that exercise exacerbated the extent of physiological hypoxia in the small intestine.Next,using ODD-Luc mice,we found that moderate exercise increased the in vivo HIF-1α level in the small intestine.The postexercise HIF-1α level was gradually decreased in a time-dependent manner.Interestingly,the redistribution of tissue hypoxia and the increase of HIF-la expression were not related to the exercise intensity and duration.Conclusion:This study provided evidence that the small intestine is the primary target organ for exercise-induced tissue hypoxia and HIF-la redistribution,suggesting that HIF-1α may be a potential target for the regulation of gastrointestinal functions after exercise.展开更多
Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this...Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury.Methods:In this study,a total of 72 mice were used.Eight of them were randomly chosen for the control group,while the rest were subjected to muscle contusion.Subsequently,their gastrocnemius muscles were harvested at different time points.The changes in muscle morphology were assessed by hematoxylin and eosin(HE) stain.In addition,the gene expression was analyzed by real-time polymerase chain reaction.Results:The data showed that the expression of many genes,i.e.,specific markers of immune cells and satellite cells,regulatory factors for muscle regeneration,cytokines,and chemokines,increased in the early stages of recovery,especially in the first 3 days.Furthermore,there were strict rules in the expression of these genes.However,almost all the genes returned to normal at 14 days post-injury.Conclusion:The sequence of immune cells invaded after muscle contusion was neutrophils,M1 macrophages and M2 macrophages.Some CC(CCL2,CCL3,and CCL4) and CXC(CXCL10) chemokines may be involved in the chemotaxis of these immune cells.HGF may be the primary factor to activate the satellite cells after muscle contusion.Moreover,2 weeks are needed to recover when acute contusion happens as used in this study.展开更多
Purpose:A randomized,controlled trial was conducted to determine whether a 6-week low calorie diet and aerobic exercise intervention could alter metabolic syndrome(MetS) risk factors in pre-pubescent obese Chinese chi...Purpose:A randomized,controlled trial was conducted to determine whether a 6-week low calorie diet and aerobic exercise intervention could alter metabolic syndrome(MetS) risk factors in pre-pubescent obese Chinese children.Methods:The subjects were randomized into diet and exercise(DE) and control(C) groups.The DE group ingested 1600-2000 kcal/day adjusted to each participant’s basal metabolic rate,and engaged in high-volume aerobic exercise(6 days/week,twice daily,for 3 h per session) for 6 weeks.A total of 215 obese children between the ages of 11 and 13 years were recruited into the study,with 167 subjects(DE,n=95;C,n=72) completing all phases.Pre-and post-study measures included body weight,body mass index,waist circumference,body fat percentage,blood pressure and other MetS-related markers from fasting blood samples(serum cholesterol,triglycerides,insulin,and glucose).Results:Compared to controls,the DE subjects experienced significantly reduced levels for all outcome markers(p 【 0.05),except for fasting blood glucose in boys(p=0.09).Conclusion:An intensive,6-week diet and exercise intervention had favorable effects in altering MetS risk factors in obese Chinese children aged 11 to 13.展开更多
基金supported by the National Natural Science Foundation of China(NO.31801003 for DX,NO.31701040 for BL)Shanghai Key Lab of Human Performance(Shanghai University of Sport)(NO.11DZ2261100)。
文摘Background:The anti-inflammatory effect of exercise may be an underlying factor in improving several autoimmune diseases.The aim of this systematic review was to examine the evidence on the role of exercise training in mitigating inflammation in adolescents and adults with autoimmune disease.Methods:PubMed,Web of Science,and Embase databases were systematically reviewed for related studies published between January 1,2003,and August 31,2023.All randomized and non-randomized controlled trials of exercise interventions with autoimmune disease study participants that evaluated inflammation-related biomarkers were included.The quality of evidence was assessed using the Tool for the assEssment of Study qualiTy and reporting in EXercise scale and Cochrane bias risk tool.Results:A total of 14,565 records were identified.After screening the titles,abstracts,and full texts,87 were eligible for the systematic review.These studies were conducted in 25 different countries and included a total of 2779 participants(patients with autoimmune disease,in exercise or control groups).Overall,the evidence suggests that inflammation-related markers such as C-reactive protein,interleukin 6,and tumor necrosis factor a were reduced by regular exercise interventions.Regular exercise interventions combined with multiple exercise modes were associated with greater benefits.Conclusion:Regular exercise training by patients with autoimmune disease exerts an anti-inflammatory influence.This systematic review provides support for the promotion and development of clinical exercise intervention programs for patients with autoimmune disease.Most patients with autoimmune disease can safely adopt moderate exercise training protocols,but changes in inflammation biomarkers will be modest at best.Acute exercise interventions are ineffective or even modestly but transiently pro-inflammatory.
基金supported by National Natural Science Foundation of China (Grant number:31471135,31701040, and 31801003)Shanghai Sailing Program (Grant number: 17YF1418000)Shanghai Municipal Education Commission (Grant number:Chenguang Program 16CG57)
文摘Background:Exercise induces blood flow redistribution among tissues,leading to splanchnic hypoperfusion.Intestinal epithelial cells are positioned between the anaerobic lumen and the highly metabolic lamina propria with an oxygen gradient.Hypoxia-inducible factor(HIF)-la is pivotal in the transcriptional response to the oxygen flux.Methods:In this study,the pimonidazole hydrochloride staining was applied to observe the tissue hypoxia in different organs,which might be affected by the blood flow redistribution.The HIF-la luciferase reporter ROSA26 oxygen-dependent degradation domain(ODD)-Luc/^+mouse model(ODD domain-Luc;female,n=3-6/group) was used to detect the HIF-la expression in the intestine.We used 3 swimming models:moderate exercise for 30 min,heavy-intensity exercise bearing 5% bodyweight for 1.5 h,and long-time exercise for 3 h.Results:We found that 1 session of swimming at different intensities could induce tissue hypoxia redistribution in the small intestine,colon,liver and kidney,but not in the spleen,heart,and skeletal muscle.Our data showed that exercise exacerbated the extent of physiological hypoxia in the small intestine.Next,using ODD-Luc mice,we found that moderate exercise increased the in vivo HIF-1α level in the small intestine.The postexercise HIF-1α level was gradually decreased in a time-dependent manner.Interestingly,the redistribution of tissue hypoxia and the increase of HIF-la expression were not related to the exercise intensity and duration.Conclusion:This study provided evidence that the small intestine is the primary target organ for exercise-induced tissue hypoxia and HIF-la redistribution,suggesting that HIF-1α may be a potential target for the regulation of gastrointestinal functions after exercise.
基金supported by the grants from National Natural Science Foundation of China (No.31271273,No.31300975)the Doctoral Fund of Ministry of Education of China (No.20133156120004)the Key Lab of Exercise and Health Sciences of Ministry of Education (Shanghai University of Sport)
文摘Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury.Methods:In this study,a total of 72 mice were used.Eight of them were randomly chosen for the control group,while the rest were subjected to muscle contusion.Subsequently,their gastrocnemius muscles were harvested at different time points.The changes in muscle morphology were assessed by hematoxylin and eosin(HE) stain.In addition,the gene expression was analyzed by real-time polymerase chain reaction.Results:The data showed that the expression of many genes,i.e.,specific markers of immune cells and satellite cells,regulatory factors for muscle regeneration,cytokines,and chemokines,increased in the early stages of recovery,especially in the first 3 days.Furthermore,there were strict rules in the expression of these genes.However,almost all the genes returned to normal at 14 days post-injury.Conclusion:The sequence of immune cells invaded after muscle contusion was neutrophils,M1 macrophages and M2 macrophages.Some CC(CCL2,CCL3,and CCL4) and CXC(CXCL10) chemokines may be involved in the chemotaxis of these immune cells.HGF may be the primary factor to activate the satellite cells after muscle contusion.Moreover,2 weeks are needed to recover when acute contusion happens as used in this study.
基金supported by the Shanghai Key Laboratory of Human Performance(NO.11DZ2261100)Grants yjscx2012007xsxr2012045
文摘Purpose:A randomized,controlled trial was conducted to determine whether a 6-week low calorie diet and aerobic exercise intervention could alter metabolic syndrome(MetS) risk factors in pre-pubescent obese Chinese children.Methods:The subjects were randomized into diet and exercise(DE) and control(C) groups.The DE group ingested 1600-2000 kcal/day adjusted to each participant’s basal metabolic rate,and engaged in high-volume aerobic exercise(6 days/week,twice daily,for 3 h per session) for 6 weeks.A total of 215 obese children between the ages of 11 and 13 years were recruited into the study,with 167 subjects(DE,n=95;C,n=72) completing all phases.Pre-and post-study measures included body weight,body mass index,waist circumference,body fat percentage,blood pressure and other MetS-related markers from fasting blood samples(serum cholesterol,triglycerides,insulin,and glucose).Results:Compared to controls,the DE subjects experienced significantly reduced levels for all outcome markers(p 【 0.05),except for fasting blood glucose in boys(p=0.09).Conclusion:An intensive,6-week diet and exercise intervention had favorable effects in altering MetS risk factors in obese Chinese children aged 11 to 13.