期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Tribological behavior of A356-CNT nanocomposites fabricated by various casting techniques 被引量:10
1
作者 Benyamin ABBASIPOUR behzad niroumand +1 位作者 Sayed Mahmoud MONIR VAGHEFI Mohammad ABEDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期1993-2004,共12页
Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocastin... Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocasting, stir casting, and compocasting techniques. Effects of addition of carbon nanotubes (CNTs), casting process and the applied load on wear properties and mechanisms were investigated. It was found that wear loss, wear rate and friction coefficient of nanocomposite samples remarkably declined by the addition of CNTs. Moreover, changing the casting process from fully liquid to semisolid routes, plus increasing fractions of the primary phase were the two factors that improved the wear properties of the investigated samples, especially nanocomposite ones. In addition, it was revealed that adhesion and delamination were the dominant wear mechanism of the monolithic samples produced by fully liquid and semisolid routes, respectively. However, regardless of fabrication techniques, the abrasion was the main wear mechanism of nanocomposite samples. 展开更多
关键词 A356 aluminum alloys NANOCOMPOSITE compocasting carbon nanotube (CNT) wear mechanism wear properties
在线阅读 下载PDF
A novel method to improve interfacial bonding of compound squeeze cast Al/Al-Cu macrocomposite bimetals:Simulation and experimental studies 被引量:7
2
作者 Mohammad Hossein BABAEE Ali MALEKI behzad niroumand 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1184-1199,共16页
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th... A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert. 展开更多
关键词 Al/Al-4.5wt.%Cu macrocomposite bimetal interfacial bonding surface machining pattern microstructure mechanical properties simulation
在线阅读 下载PDF
Fabrication of AA2024−TiO2 nanocomposites through stir casting process 被引量:6
3
作者 Mehrdad SHAYAN Beitallah EGHBALI behzad niroumand 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2891-2903,共13页
Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by emp... Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by employing the stir casting method.The structural properties of the produced samples were then investigated by optical microscopy and scanning electron microscopy;their mechanical properties were also addressed by hardness and tensile tests.The results showed that adding 1 vol.%TiO2 nanoparticles reduced the grain size and dendrite arm spacing by about 66%and 31%,respectively.Also,hardness,ultimate tensile strength,yield strength,and elongation of AA2024−1vol.%TiO2(np)composite were increased by about 25%,28%,4%and 163%,respectively,as compared to those of the monolithic component.The agglomerations of nanoparticles in the structure of nanocomposites were found to be a factor weakening the strength against the strengthening mechanisms.Some agglomerations of nanoparticles in the matrix were detected on the fractured surfaces of the tension test specimens. 展开更多
关键词 AA2024−TiO2 nanocomposites mechanical properties MICROSTRUCTURE fracture surface stir casting process
在线阅读 下载PDF
Simulation and experimental verification of interfacial interactions in compound squeeze cast Al/Al-Cu macrocomposite bimetal 被引量:3
4
作者 Mohammad Hossein BABAEE behzad niroumand +1 位作者 Ali MALEKI Meysam LASHANI ZAND 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期950-963,共14页
The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was ... The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was fabricated by compound squeeze casting process. Then, heat transfer, solidification and distribution of the generated stresses along the interface region of the bimetal were analyzed using Thermo-Calc, ProCAST and ANSYS softwares, and structure, copper distribution and microhardness changes across the interface of the bimetal were studied. The results showed no noticeable change in the structure of the Al-4.5wt.%Cu insert and no obvious micromixing and diffusion of copper across the interface. Simulation results were in good agreement with the experimental ones only when an equivalent oxide layer at the interface was defined and its effect on heat transfer was considered. This layer caused up to 50% decrease in local liquid fraction formed on the surface of the insert. Simulation of the generated stresses showed a uniformly distributed stress along the interface which was significantly lower than the compressive strength of the oxide layer, resulting in its good stability during the fabrication process. It was postulated that this continuous oxide layer not only acted as a thermal barrier but prevented the direct metal-metal contact along the interface as well. 展开更多
关键词 Al/Al-Cu macrocomposite BIMETAL compound squeeze casting simulation interface stress
在线阅读 下载PDF
Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities
5
作者 Mohammad Hossein Mosallanejad Saber Sanaei +3 位作者 Masoud Atapour behzad niroumand Luca Iuliano Abdollah Saboori 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第9期1453-1464,共12页
In this work, two types of CP Ti cubes with similar volumetric energy densities(VED) but diff erent process parameters were produced using laser powder bed fusion(LPBF) method. The corrosion behavior of the fabricated... In this work, two types of CP Ti cubes with similar volumetric energy densities(VED) but diff erent process parameters were produced using laser powder bed fusion(LPBF) method. The corrosion behavior of the fabricated specimens was investigated by conducting electrochemical impedance spectroscopy(EIS) and polarization experiments in simulated body fl uid(SBF) solution at 37 °C. The results indicated that the microstructure and porosities, which are of great importance for biomedical applications, can be controlled by changing the process parameters even under constant energy densities. The sample produced with a lower laser power(E1) was featured with a higher level of porosity and thinner alpha laths, as compared with the sample fabricated with a higher laser power(E2). Moreover, results obtained from the bioactivity tests revealed that the sample produced with a higher laser power conferred a slight improvement in the bioactivity due to the higher amount of porosity. Lower laser power and hence higher porosity level promoted the formation of bone-like apatite on the surface of the printed specimens. The potentiodynamic polarization tests revealed inferior corrosion resistance for the fabricated sample with higher porosity. Moreover, the EIS results after diff erent immersion times indicated that a stable oxide film was formed on the surface of samples for all immersion times. After 1 and 3 days of immersion, superior passivation behavior was observed for the sample fabricated with lower laser power. However, very similar impedance and phase values were observed for all the samples after 14 days of immersion. 展开更多
关键词 Additive manufacturing Laser powder bed fusion Energy density CORROSION MICROSTRUCTURE CP Titanium
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部