The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inp...The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inputs as well as pollution and soil compaction. Especially, global warming can amplify the negative effects of urban microclimates on tree growth, health and well-being of citizens. To quantify the growth of urban trees influenced by the urban climate, ten urban tree species in four climate zones were assessed in an overarching worldwide dendrochronological study. The focus of this analysis was the species water oak (Quercus nigra L.) in Houston, Texas, USA. Similar to the overall growth trend, we found in urban trees, water oaks displayed an accelerated growth during the last decades. Moreover, water oaks in the city center grew better than the water oaks growing in the rural surroundings of Houston, though this trend was reversed with high age. Growth habitat (urban, suburban, rural and forest) significantly affected tree growth (p < 0.001) with urban trees growing faster than rural growing trees and forest trees, though a younger age of urban trees might influence the found growth patterns. Growing site in terms of cardinal direction did not markedly influence tree growth, which was more influenced by the prevalent climatic conditions of Houston and the urban climate. Higher temperatures, an extended growing season and eutrophication can cause an accelerated growth of trees in urban regions across, across all climatic zones. However, an accelerated growth rate can have negative consequences like quicker ageing and tree death resulting in higher costs for new plantings and tree management as well as the decrease in ecosystem services due to a lack of old trees providing greatest benefits for mitigating the negative effects of the urban climate.展开更多
To tackle the planetary environmental and climate crisis and meet the United Nations’Sustainable Development Goals(SDGs),we must fully leverage the potential of Earth observations(EO).This involves integrating global...To tackle the planetary environmental and climate crisis and meet the United Nations’Sustainable Development Goals(SDGs),we must fully leverage the potential of Earth observations(EO).This involves integrating globally sourced data on the atmosphere,hydrosphere,cryosphere,lithosphere,along with ecological and socio-economic information.By harmonizing and integrating these diverse data sources,we can more effectively incorporate observational data into multi-scale modeling and artificial intelligence(AI)frameworks.This paper is based on discussions from the“Towards Global Earth Observatory”workshop held from May 8-10,2023,organized by the World Meteorological Organization(WMO)and the Atmosphere and Climate Competence Center(ACCC),in collaboration with the Institute for Atmospheric and Earth System Research(INAR)at the University of Helsinki.The current state of EO and data repositories is fragmented,highlighting the need for a more integrated approach to establish a new global Ground-Based Earth Observatory(GGBEO).Here,we summarize the current status of selected in-situ and ground-based remote sensing observation systems and outline future actions and recommendations to meet scientific,societal,and economic needs.In addition,we identify key steps to create a coordinated and comprehensive GGBEO system that leverages existing investments,networks,and infrastructures.This system would integrate regional and global ground-based in situ and remote sensing systems,marine,and airborne observational data.An integrated approach should aim for seamless coordination,interoperable and harmonized data repositories,easily searchable and accessible data,and sustainable long-term funding.展开更多
基金the AUDI Environmental Foundation for funding this study(project 5101954:“Reaktionskinetik von Baumenunter Klimaveranderungen”—“Reaction kinetics of trees under climate change”).
文摘The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inputs as well as pollution and soil compaction. Especially, global warming can amplify the negative effects of urban microclimates on tree growth, health and well-being of citizens. To quantify the growth of urban trees influenced by the urban climate, ten urban tree species in four climate zones were assessed in an overarching worldwide dendrochronological study. The focus of this analysis was the species water oak (Quercus nigra L.) in Houston, Texas, USA. Similar to the overall growth trend, we found in urban trees, water oaks displayed an accelerated growth during the last decades. Moreover, water oaks in the city center grew better than the water oaks growing in the rural surroundings of Houston, though this trend was reversed with high age. Growth habitat (urban, suburban, rural and forest) significantly affected tree growth (p < 0.001) with urban trees growing faster than rural growing trees and forest trees, though a younger age of urban trees might influence the found growth patterns. Growing site in terms of cardinal direction did not markedly influence tree growth, which was more influenced by the prevalent climatic conditions of Houston and the urban climate. Higher temperatures, an extended growing season and eutrophication can cause an accelerated growth of trees in urban regions across, across all climatic zones. However, an accelerated growth rate can have negative consequences like quicker ageing and tree death resulting in higher costs for new plantings and tree management as well as the decrease in ecosystem services due to a lack of old trees providing greatest benefits for mitigating the negative effects of the urban climate.
基金supported by the Atmosphere and Climate Competence Center(ACCC)Flagship,funded by the Research Council of Finland(Contract No(s).337549,357902,359340).
文摘To tackle the planetary environmental and climate crisis and meet the United Nations’Sustainable Development Goals(SDGs),we must fully leverage the potential of Earth observations(EO).This involves integrating globally sourced data on the atmosphere,hydrosphere,cryosphere,lithosphere,along with ecological and socio-economic information.By harmonizing and integrating these diverse data sources,we can more effectively incorporate observational data into multi-scale modeling and artificial intelligence(AI)frameworks.This paper is based on discussions from the“Towards Global Earth Observatory”workshop held from May 8-10,2023,organized by the World Meteorological Organization(WMO)and the Atmosphere and Climate Competence Center(ACCC),in collaboration with the Institute for Atmospheric and Earth System Research(INAR)at the University of Helsinki.The current state of EO and data repositories is fragmented,highlighting the need for a more integrated approach to establish a new global Ground-Based Earth Observatory(GGBEO).Here,we summarize the current status of selected in-situ and ground-based remote sensing observation systems and outline future actions and recommendations to meet scientific,societal,and economic needs.In addition,we identify key steps to create a coordinated and comprehensive GGBEO system that leverages existing investments,networks,and infrastructures.This system would integrate regional and global ground-based in situ and remote sensing systems,marine,and airborne observational data.An integrated approach should aim for seamless coordination,interoperable and harmonized data repositories,easily searchable and accessible data,and sustainable long-term funding.